
1 of 46

Forcing PCR-GLOBWB with CRU data

Rens van Beek, Utrecht University, 2008

Introduction

The Climate Research Unit the University of East Anglia provides global climate data that
potentially are extremely valid as forcing for macro-scale hydrological models as PCR-
GLOBWB that requires precipitation, evapotranspiration and temperature. The advantage of
the CRU products is that they are based on observations, covering the global land mass, and
processed in a consistent manner. The period covered extends back over the past century,
spanning the years 1901-2002 inclusive, for which sufficient meteorological data are
available. As station density becomes low in certain regions of the world further back in time,
a 30-year period was selected that was deemed to be little influenced by the alleged global
warming at the end of the past century (1961-1990) which has since been adapted as the
IPCC’s baseline climate. Two products cover these respective periods with a spatial
resolution of 0.5° and a monthly resolution, the first being the CRU TS 2.1 for the time series
from 1901 to 2002 inclusive, the second being the CRU CLIM 1.0 for the climatology over
1961-1990. Both products contain primary variables -being the various temperature and
precipitation products- that are directly obtained from station observations, which have a high
density in space and time. Secondary variables with lower coverage are obtained by
interpolation of the primary variables with the aid of empirical relationships. These secondary
are particularly useful to calculate potential evapotranspiration that is required to force PCR-
GLOBWB in absence of direct estimates of the actual evapotranspiration.
Some relevant fields, such as radiation and wind speed are only available for the climatology,
which otherwise has been superseded by the time series itself and a new climatology product
at a resolution of 10’ (New et al., 1998; New et al., 1999; New et al., 2002; Mitchell and
Hulme, 2005). Complications in the use of the CRU dataset arise from a varying extent of the
landmass for some of the secondary variables, from a discrepancy with the land mask used by
the hydrological model as well as from the coarse temporal resolution which may lead to
undesired results when coupled with non-linear processes such as interception that operate on
such finer time scales. Therefore, this report describes the downscaling of the CRU dataset to
daily values with the assistance of the ERA-40 reanalysis, its extrapolation to the desired land
mask of PCR-GLOBWB and to develop the methodology to calculate potential
evapotranspiration for the different land surfaces in PCR-GLOBWB. The objectives of this
exercise were to:
• Construct patches to extrapolate CRU data to a common land mask for all products and to

extrapolate all relevant products to the land mask employed by PCR-GLOBWB;
• Calculate the monthly reference potential evaporation from the CRU dataset for the length

of the time series;
• To develop a climatology of crop factors for the different land surfaces in PCR-GLOBWB

that can be used to convert the monthly reference potential evapotranspiration into
vegetation specific values;

• Break-down monthly values of CRU precipitation and temperature and the calculated
reference potential evapotranspiration to daily values, gridded at 0.5° using daily surface
fields from the ERA-40 reanalysis to drive the model.

In the next sections the methodology and resulting parameterizations will be discussed. This
report does not investigate the quality issues related to the use of the CRU datasets for
continental runoff.

2 of 46

Methodology

Processing the CRU datasets

The CRU datasets contain an ASCII file with the gridded integer surface fields for all months
and a header with meta-information on the name, unit and conversion factor from integers to
real values for each variable. The CRU TS 2.1 contains as primary variables the monthly
precipitation total, the mean daily temperature and the diurnal temperature range per month.
As secondary data, also the daily minimum and maximum temperature are provided.
Additional secondary datasets comprise the fractional cloud cover, the vapour pressure and
the number of wet and frost days. In addition to these data, the CRU CLIM 1.0 provides
secondary data on wind speed and radiation. Otherwise, this dataset is obsolete.
Each of the ASCII files with gridded fields was processed by means of a Fortran program
(cru_grid2asc.exe , see Appendix 1) and stored as an individual ASCII grid with integer
values (360 rows x 720 columns). This grid was converted to the PCRaster format by
invoking the program asc2map from the python script mapgen_cru.py . This resulted in
1224 monthly gridded surface fields over the period 1901-2002 for the time series and 12
mean monthly maps for the climatology.
Specific processing of these surface fields was carried out by means of the python script
cru_proc.py (Appendix 2). First, the PCRaster maps were extracted from the respective
zip archives and their mean and standard deviation computed for the baseline period 1961-
1990. This concerned the mean daily temperature, precipitation, cloud cover, vapour pressure,
number of wet days and diurnal temperature range that were required for later processing.
The CRU TS 2.1 dataset employs a common land mask for all its products. It misses wind
speed, necessary to calculate the reference potential evapotranspiration but this is provided by
the CLIM 1.0 dataset, albeit with a slightly different land mask. To extrapolate these data to
the common land mask, a patch was constructed by determining the Holdridge life zone for
each cell from the annual total precipitation and average temperature as approximation of the
biotemperature. The potential evapotranspiration ratio (PET) was neglected as it originally is
an empirical function of the biotemperature and does not add directly to the classification
(Leemans, 1990). Temperature from the climatology over 1961-1990 was broken down
logarithmically in the classes <1.5 °C, < 3 °C, < 6 °C, < 12 °C, < 16°C, < 24 °C and >= 24°C.
Each of these classes was then broken down on the basis of precipitation, again
logarithmically from <125 mm/year to more than 8000 mm/year, giving a total of 56 possible
classes. For each of these classes, any cell of the CRU TS 2.1 product that was not covered by
the CLIM 1.0 was assigned the ID of the nearest cell of the latter product belonging to the
same Holdridge life zone. Thus, cell values could be extrapolated to the common land mask
and used accordingly.

Reference potential evapotranspiration and crop factors

According to the FAO Guidelines (Doorenbos & Pruitt, 1977; Allen et al., 1998), potential
evapotranspiration was calculated for a reference surface, ET0 [L·T-1], named reference
potential evapotranspiration hereafter, and converted to a crop specific potential
evapotranspiration, ETc [L·T-1], by means of a crop factor, kc [-]:
 0ETkET cc ⋅= . Equation 1

3 of 46

In this manner, all meteorological influences are captured by the reference potential
evapotranspiration whereas the crop factor, kc, captures the effect of the individual plants and
surface conditions on both the crop transpiration and the soil evaporation alike. This crop
factor applies to a disease-free crop under an optimum supply of water and nutrients but local
and regional environmental factors can be considered (Doorenbos & Pruitt, 1977). Although
the crop factor approach was originally developed for real crops, it can be expanded to natural
vegetation. Here, crop factors are thought to represent average conditions over a uniform,
vegetated surface for a fixed period of time and computed and aggregated accordingly as
explained below.

According to Allen et al. (1998) a new definition of the reference surface and the method to
obtain the reference evapotranspiration were required as a result of the ambiguities that had
arisen since the formulation of these concepts by Doorenbos & Pruitt in the FAO Guidelines
of 1977. Thus, Allen et al. (1998) recommended replacing the originally preferred Penman
Equation (Penman, 1948) by the Penman-Montheith Equation (Montheith, 1965) to calculate
the reference potential evaporation. Through the inclusion of the canopy resistance, the
Penman-Montheith Equation performs relatively accurate and consistent in both arid and
humid climates whereas the Penman Equation was shown to overestimate the
evapotranspiration frequently. Here the following version of the Penman-Montheith Equation
has been used rather than the computational formula presented by Allen et al. (1998).

() ()

++

−
+−

=

a

s
v

a

as
pan

r

r

r

ee
cGR

ET

1
0

γδλ

ρδ
, Equation 2

where es is the saturation vapour pressure, ea is the actual vapour pressure, both in [Pa], δ is
the slope of the function of the saturation vapour pressure versus the air temperature
[Pa·°C-1], γ is the psychometric constant [Pa·°C-1], ρa is the density of air [1.205 kg·m-
3], cp is the specific heat capacity of air [1004 J·kg-1·°C-1], Rn is the net incoming
radiation and G the ground flux, both in [W·m-2], λv is the latent heat of vaporization
[J·kg-1], and rs and ra are the surface and aerodynamic resistance respectively [s·m-1].

Following the FAO guidelines on crop water demands (Doorenbos & Pruitt, 1977), the
reference potential evapotranspiration was calculated for longer periods, in this case the
monthly resolution of the CRU dataset. On this ground, the ground flux was neglected,
assuming no heat exchange between soil and air over longer periods. Of the variables of
Equation 2, only ρa and cp are constants and the vapour pressure is specified directly by the
CRU dataset. All other variables had to be calculated. So, the saturated vapour pressure was
calculated from the average daily temperature under the underlying assumption of the
isothermal conditions of the Penman Equation (Allen et al., 1998):

+
+⋅=

3.237

27.17
exp611

T

T
es . Equation 3

T denotes here the average monthly temperature from the CRU dataset in [°C], which is
referred to as T hereafter.

The slope of the saturation vapour pressure versus the air temperature is calculated by (Allen
et al., 1998):

4 of 46

()23.237

4098

+
⋅

=
T

esδ . Equation 4

The psychrometric constant, γ, is calculated as (Allen et al., 1998):

v

p Pc

ελ
γ

⋅
= , Equation 5

where P is the atmospheric pressure [Pa], e is the ratio of the molecular weight of water
vapour and dry air [0.622 -].

The psychometric constant is not constant as both the latent heat of vaporization and the
atmospheric pressure vary with the air temperature and the elevation respectively. Allen et al.
(1998) ignore the variation in λv with T but this relationship is maintained here (Dingman,
1994):
 Tv 237010501.2 6 −⋅=λ . Equation 6

Due to this temperature-dependency of λv the calculated evapotranspiration of Equation 6 is
slightly larger at higher temperatures and vice versa than with the computational formula of
Allen et al. (1998).

The atmospheric pressure is calculated here froma generalization of the gas law, assuming an
overall temperature of 20 °C, assuming a typical atmospheric pressure at sea level of 101300
Pa (Allen et al., 1998):

26.5

293

0065.0293
101300

 −= z
P , Equation 7

where z is the elevation in [m], which in this case was given by the average elevation of the
Hydro1k land mass within each cell.

The effectiveness by which heat and vapour can be exchanged with the atmosphere depend on
the vertical transport capacity of turbulent air, as expressed by the friction velocity of the
eddies. Allen et al. (1998) estimate the diffusivity as the product of the friction velocity for
the momentum transfer and the heat and vapour transfer:

z

h

Dh

m

Dm

a
uk

z

zz

z

zz

r
2

00

lnln

 −

 −

= , Equation 8

where m and h stand for the momentum and heat and vapour transfer respectively. zm and zh
are respectively the heights at which the wind speed and temperature/vapour pressure
are measured, zD is the zero plane displacement height, z0 stands for the roughness
length, k is the Karman constant, [0.41 -], and zu is the monthly wind speed measured
at height zm.

In absence of wind speed fields in the CRU TS 2.1, the monthly climatology from CRU
CLIM 1.0 was used to estimate zu . This value was capped at its lower end by 0.1 m·s-1 as
some negative values were present over certain parts of the world, most noticeably over the
mountains in SE Australia. The wind speed was taken to be representative for that at 10 m,

5 of 46

the air temperature, from which es was calculated, at 2 m. The zero plane displacement was
set at 2/3 of the vegetation height. The roughness length, Z0m, for momentum transfer at 0.123
times the vegetation height whilst that for heat and vapour transfer, Z0h, was set to 0.1 times
Z0m.

For each month, the incoming net radiation, Rn [W·m-2], was estimated as:
 () lsn RRR +−= α1 Equation 9

where Rs is the incoming global shortwave radiation, Rl is the emitted long-wave radiation
emitted by the earth surface, negative in general, and α is the albedo [-] determining
the amount of shortwave radiation that is reflected back into the atmosphere.

Rs was obtained from the extraterrestrial radiation, Ra. The extraterrestrial radiation was
calculated for a standard year as a function of the Julian day number and latitude and
averaged per month (Dingman, 1994), giving 12 maps. Thus, the extraterrestrial radiation
replicates the typical seasonal change over the globe with some zonal variations arising due to
the interaction of day length and the angle of the incoming solar radiation. Rs was then
calculated from the fraction of actual sunshine hours over the maximum sunshine hours as
originally proposed by Doorenbos & Pruitt (1977):

 () as RN
nbaR += , Equation 10

where n/N is the fraction of actual sunshine hours over the maximum sunshine hours and a
and b are empirical parameters that are respectively set to 0.25 and 0.50 (Doorenbos & Pruitt,
1977).

Rather than fractional sunshine hours n/N the CRU CLIM 1.0 and TS 2.1 specify fractional
cloud cover and a relation between the two variables was required. To this end, the tabulated
data of Doorenbos & Pruitt (1977) were used, which also were applied by New et al. (1998)
in the construction of the CRU datasets to standardize the available observations of fractional
sunshine hours and cloud cover prior to interpolation. New et al. (1998) observed that bias
was introduced at high latitudes due to weak sunshine at low sun angles in winter whilst in
tropical regions cloud cover is often overestimated by observers. Given 1088 stations with
joint observations of n/N and cloud cover, they applied additional empirical adjustments to
reduce these errors. Hence, the reported, corrected cloud cover has been translated into
fractional sunshine hours from the tabulated data of Doorenbos & Pruitt (1977) by means of
linear interpolation (Figure 1).

6 of 46

0.00

0.25

0.50

0.75

1.00

0 0.25 0.5 0.75 1

Fractional cloud cover

F
ra

ct
io

n

n/N a+b f(n/N)Rs f(n/N)Rl

Figure 1: Relation between fractional cloud cover and fractional sunshine hours.
 a+b are the empirical constants of Equation [10], determining the maximum incoming shortwave radiation for a
cloudless sky, f(n/N)Rs is the fraction according to Equation 9 of extraterrestrial radiation reaching the surface
and f(n/N)Rl is the reduction factor of the emitted long-wave radiation with increasing cloud cover.

Net long-wave radiation was calculated from the Stefan-Boltzman Equation for both the
incoming and outgoing long-wave radiation given the respective emissivity of the atmosphere
and surface and the body temperature. For most surfaces, the emissivity can be taken as one.
For clear skies, the atmospheric emissivity depends largely on humidity, whilst clouds act as
blackbodies and increase the emissivity of the atmosphere. These effects on the net emitted
long-wave radiation are captured by the formula proposed by Allen et al. (1998) through the
vapour pressure and the relative incoming global radiation, assuming that under isothermal
conditions both the earth surface and the overlying air are at the same temperature:

 ()

 −⋅−−= − 35.035.11043.434.0

0

34

R
ReTR s

aKl σ , Equation 11

where σ is the Stefan-Boltzman constant [5.68·10-8 W·m-2·K-4], TK is the air temperature in
Kelvin and R0 is the incoming global radiation under clear-sky conditions,

ab)R(a + (see Figure 1).

The reduction due to humidity ranges between 0.34 for completely dry air to zero when the
vapour pressure exceeds 5.9 kPa. The correction due to the relative incoming global radiation
ranges between 1 under clear-sky conditions to 0.1 under completely clouded conditions (see
also Figure 1).

Not specified so far are those variables that are dependent on the surface conditions being the
albedo, α, the surface resistance, rs, and the vegetation height, zveg. As a reference surface
Allen et al. (1998) proposed hypothetical grass cover on the ground that this crop is well
studied. This reference surface is defined unambiguously as “a hypothetical reference crop
with an assumed crop height of 0.12 m, a fixed surface resistance of 70 s m-1 and an albedo of
0.23." These values have been included in the PCRaster script to calculate reference potential
evapotranspiration, penmon_cru.txt (see Appendix 3).

7 of 46

To convert the reference potential evapotranspiration to crop-specific values, crop factors are
required (Equation 1). Conform the land surface parameterization in PCR-GLOBWB, these
crop factors have to be specified for the fraction open freshwater, short vegetation and tall
vegetation respectively and effective values have been calculated for each 0.5° cell. These
crop factors compensate for any effects not taken into consideration in the calculation of the
reference potential evapotranspiration. For water, this may concern the delayed exchange of
heat between the air and deeper water bodies, lower surface roughness and lower albedo. For
vegetated surfaces, it concerns amongst others the stomatal resistance and active leaf area as
well as vegetated area and surface roughness. To account for temporal variations in these
surface conditions, monthly crop factors were calculated according to the FAO Guidelines of
Allen et al. (1998). These crop factors were based on the climatology over the period 1961-
1990 as calculated from the CRU TS 2.1 dataset.
For the vegetated surface, temporal variations in the crop factor were assumed to correspond
with the phenology of the vegetation over the growing season, prescribing the different stages
of crop or plant development and vigour. These plant development stages can be subdivided
into i) development proper, ii) full-cover or mid-season stage, iii) senescence, and iv)
dormancy (Figure 2.a). The development stage is the moment between emergence of the first
leaves or plants –depending whether the vegetation is perennial or annual- and the attainment
of full cover. During the mid-season period vegetation is at its most vigorous, covering the
largest area with the most active and healthy leaves partaking in transpiration. After full cover
has been achieved, senescence set in, with leaves becoming less active and healthy, e.g., in the
fall for temperate regions, until dormancy sets in. These stages pertain to natural vegetation
that will exploit the available growing conditions fully. For actual crops, the length of these
stages may be different, with full growth periods ranging between 100 to 150 days on average
depending on the favourability of the meteorological conditions during the growing season
(Doorenbos & Pruitt, 1977). The length of the full growing season is determined by the
seasonal changes in radiation, temperature and moisture availability, as reproduced by the
CRU TS 2.1 climatology and assuming that all other factors, e.g., fertility, are optimal. Here,
temperature is used as a proxy for the limitations temperature and radiation pose to
photosynthesis. Generally, growth is deemed impossible whenever killing frost occurs or the
air temperature is below 5°C for long periods. This threshold is applied here to climatology of
mean monthly temperature, which statistic captures the likelihood of killing frost in the long
run. At higher latitudes, this temperature threshold also reflects the lack of radiation during
winter. The seasonal course in temperature-driven growth was simulated by the BATS
scheme (Dickinson et al., 1983):

 ()
2

1

−
−

−=
minmax

max

TT

TT
Tf Equation 12

where T is the monthly temperature, Tmin= 5°C and Tmax is the maximum temperature over
the climatology, subject to the condition T≥ 5°C. f(T) is the temperature function that
varies between 0 and 1 for T= Tmin and T= Tmax respectively.

Tmin was kept at 5°C to reflect potentially favourable growth conditions in warmer climes.
Tmax was allowed to vary as locally vegetation will exploit the growing conditions fully.

8 of 46

f (G)

kc

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1.10

J
a
n

F
e
b

M
a
r

A
p
r

M
a
y

J
u
n

J
u
l

A
u
g

S
e
p

O
c
t

N
o
v

D
e
c

G
ro
w
th
 f
u
n
c
ti
o
n
,
c
ro
p
 f
a
c
to
r

a
p
p
ro
x
.
1
0
%

g
ro
u
n
d
c
o
v
e
r

A
p
p
ro
x
.

8
0
%

a
p
p
ro
x
.
1
0
%

g
ro
u
n
d
c
o
v
e
r

iv ivi ii iii

D
o
rm

a
n
c
y

D
o
rm

a
n
c
y

D
e
v
e
lo
p
m
e
n

S
e
n
e
s
c
e
n
c
e

Full-cover,

mid-season

A)

f' (G)

Step

function

LAIrel

0

1

J
a
n

F
e
b

M
a
r

A
p
r

M
a
y

J
u
n

J
u
l

A
u
g

S
e
p

O
c
t

N
o
v

D
e
c

G
ro
w
th
 f
u
n
c
ti
o
n
,
L
A
Ir
e
l

D)

f (W)f (T)

0

1

J
a
n

F
e
b

M
a
r

A
p
r

M
a
y

J
u
n

J
u
l

A
u
g

S
e
p

O
c
t

N
o
v

D
e
cG
ro
w
th
 f
u
n
c
ti
o
nB)

f (G)

f (T)·f (W)

10%

80%

f '(G)

0

1

J
a
n

F
e
b

M
a
r

A
p
r

M
a
y

J
u
n

J
u
l

A
u
g

S
e
p

O
c
t

N
o
v

D
e
cG
ro
w
th
 f
u
n
c
ti
o
nC)

Figure 2: Delineation of the growing season
Delineation of the growing season: a) Growth stages adapted after Doorenbos and Pruitt (1977) for the growth
function f(G) with corresponding crop factor; b) dependence of the growth function on temperature, f(T), and the
cumulative moisture deficit, f(S); c) derivation of the growth function: raw growth function f(T)·f(W), initial
growth function scaled between 0 and 1, f(G), and f’ (G) subdivided into growth stages on the basis of thresholds
for emergence and full-cover (10 and 80% respectively); d) f’ (G), derived step function and relative LAI, LAIrel,
after modification of the step function with the exponent a.
Shown is the curve for S Spain (36.75°N, 4.25°W) with severe water shortage over the summer. The tuned
maximum crop factor for this cell amounts to 0.56.

Water stress will reduce the potentially growth and this was taken into account as a function
of the cumulative moisture deficit over the year:

 ()

 ∆+= ∑
reqW

W
Wf 1,0max , Equation 13

where W is the available moisture storage [mm], Σ∆W is the cumulative moisture deficit
over the months that the moisture storage is exhausted and Wreq the required moisture
to sustain vigorous growth. f(W) is the moisture stress function that varies between 1
and 0 for conditions of no stress (Σ∆W= 0) to severe stress (Σ∆W≥ Wreq).

The water balance equation underlying Equation 13 was applied to the climatology of the
CRU TS 2.1 dataset until a dynamic equilibrium was obtained:
 tcttt EkPWW 01 ⋅−+= − Equation 14

where t and t-1 are used to denote the current and previous month respectively, W is the
moisture storage [mm], P is the monthly precipitation total and E0 is the reference
potential evapotranspiration, both in [mm], and kc is a tentative crop factor for the
vegetation [-].

Whenever Wt is below zero, it is added to the cumulative moisture deficit, if it is above zero,
the cumulative moisture deficit is reset to zero. If the moisture storage exceeds the total
available moisture storage capacity it is set to that value and the excess considered to be
removed by drainage or runoff. This maximum soil moisture storage capacity was set to 300
mm conform the Thornthwaite model for soil moisture availability. The tentative crop factor

9 of 46

varied between the crop factor for bare soil, ks, and that of the vegetation at full-cover, kfull,
with the temperature growth function. The full-cover crop factor was decreased from 1.2 to
0.2, the range of kfull to ks according to Allen et al. (1998) by 0.01 increments until the
following conditions were met: i) the maximum available storage should exceed Wreq, the
moisture storage required for vigorous growth, and ii) the maximum accumulated moisture
deficit should not fall below -Wreq. The adaptation of this crop factor is thought to imitate to
the adaptations by the vegetation to prolonged conditions of water stress through vegetation
density and stomatal control. In this case Wreq was arbitrarily set to 125 mm, the upper limit
of the class of deserts in the Holdridge life zone classification. When the adaptation of the
tentative crop factor did not result in any positive soil moisture storage over the year, growth
was deemed to be entirely driven by erratic rainfall. In these cases, f(W) was calculated
alternatively as:

 ()
maxP

PWf = , Equation 15

where P is the monthly precipitation total and Pmax the maximum over the climatology [mm].

The growth function, f(G), was then obtained as the product of f(T) and f(W) and scaled by its
minimum and maximum to range between 0 and 1 (Figure 2). For its rising limb, this growth
curve represents the development of ground cover over time, the maximum coinciding with
the moment of most vigorous growth, its minimum with dormancy. This growth curve was
subdivided into the four development stages on the following criteria conform Doorenbos and
Pruitt (1977):
- Vegetation emerges after dormancy as soon as f(G) exceeds 0.10 [-];
- Vegetation becomes fully dormant once f(G) falls below 0.10 [-];
- The full growing season extends from emergence to the onset of dormancy, including

the optimum growth conditions;
- Full-cover during the mid-season stage is attained in the period that the growth

conditions is optimal and f(G) exceeds 0.80 [-];
- Senescence of the vegetation sets in when the growth curve starts to decline and f(G)

falls below 0.60 [-].

On the basis of these criteria, the different points (emergence, full-cover, and senescence)
were connected by straight lines whilst from the onset of senescence the falling limb was
extrapolated to create a step function to relate the growth function to the relative change in the
amount of active leaves participating in transpiration (f’ (G) scaled to range between 0 and 1).
This fraction is taken to be proportional to the green LAI or leaf area index that is related
directly to the crop factors by Allen et al. (1998). For vigorous vegetation, the increase in LAI
will be fast during the early stages of growth and senescence and slower during the later
stages. This is achieved by applying an exponent to the step function so:

 ()aGfLAIrel '∝ . Equation 16

This exponent a varies with the occurrence of prolonged water stress and is parameterized as:

smaxfull

sfull

kk

kk
a

−
−

−= 5.01 , Equation 17

where kfull is the tuned, tentative crop factor from the water balance calculation and kfull max

and ks are the maxima for full-cover and bare soil (1.2 and 0.2 [-] respectively).

The exponent a ranges from 0.5 when kfull equals kfull max and 1.0 when kfull equals ks. These
limits were taken from Allen et al. (1998) and reflects that LAI does not fall in direct

10 of 46

proportion to stand density under vigorous growth conditions. This exponent is modified
when the relative LAI function deviates from f’ (G):
 ()()GfLAIaa rel '5.0 −+= . Equation 18

In this manner, the relative LAI increases when the growth function lies above the step
function and decreases when it lies below it (Figure 2).

Allen et al. (1998) related the crop factor to the LAI in the following way:
 () []()LAIkkkk mincfullcmincc 7.0exp1 −−−+= , Equation 19

where kc min is the minimum crop factor for bare soil [≈ 0.15-0.20 -] and kc full is the estimated
crop factor under full-cover conditions.

Allen et al. (1998) recommended Equation 19 to estimate the crop factor during the mid-
season stage for annual types of vegetation that are either natural or in a non-pristine state,
i.e., stands that do not attain optimum stand conditions in terms of height and density. Here,
this equation is applied globally to all vegetation types and to the course of the LAI over the
year given that the relative change in the LAI includes the wetting period during the initial
stage for crops and natural vegetation alike and that vegetation will exploit the available
growing season fully, either through competition or human intervention (multiple cropping
systems, forage and green fertilization, etc.).
The actual values of the LAI were based on the GLCC version 2 global land cover dataset
with a resolution of 30 arc seconds (30” or nominally 1 km). The Olson ecosystem
classification (Olson, 1994a, b) was preferred as this provides the most detailed distinction
between natural vegetation and crop types in the different climate zones (Appendix 4).
Moreover, estimates of the LAI during the growing season and dormancy for these classes
could be obtained from Hagemann et al. (1999) so that the monthly LAI, from which the
monthly crop factor was to be estimated, could be obtained from:
 ()dgreld LAILAILAILAILAI −+= , Equation 20

where LAIrel is the relative change in the LAI over the year [0-1 -] and LAId and LAIg are the
LAI [m 2·m-2] for each vegetation class respectively.

For each class, these LAI values represent the effect of the seasonal and local conditions, e.g.,
water stress, dormancy, fertility and human intervention, on plant type and density. These
seasonal LAI values range between 0 and 9.9 m2·m-2. No seasonality is present for some
tropical vegetation types, deserts as well as for built-up areas (10 out of 73 classes excluding
open water). Whenever the LAI is zero (12 out of 73 classes for LAId, 5 for LAIg) , the
estimated crop factor will revert to that for bare soil evaporation, which is set to the upper
limit of 0.20 [-] reported by Allen et al. (1998). Also, the estimated crop factor for the mid-
season stage will be less than 95% of the estimated value for full cover conditions, kc full,
whenever LAIg is less than 4.3 m2·m-2 (35 classes for LAIg).
The estimate for the mid-season crop factor under full-cover conditions under sub-humid,
calm wind conditions –minimum daily relative humidity of 45% and a wind speed at 2 m·s-1
at 2 m height- was obtained by (Allen et al., 1998):
 hk fullc 1.00.1 += , Equation 21

where h is the height of vegetation [m] and kc full is limited to 1.2 m when h>2 m.

11 of 46

This value is corrected for meteorological conditions other than sub-humid or calm wind
speeds during the mid-season stage as follows (Allen et al., 1998):

 () ()[]() 3.0

2 345004.0204.0 hRHukk minfullcfullc −−−+= , Equation 22

where u2 is the wind speed at 2 m [m·s-1], RHmin is the minimum daily relative humidity [%]
and h is the vegetation height.

The meteorological correction entails an increase in the crop factor when the mid-season wind
speed is higher than 2 m·s-1 and the minimum daily relative humidity is less than 45%. and
vice versa. The wind speed was obtained from the CRU CLIM 1.0 climatology and multiplied
by 0.75 [-] to scale it from 10 m to 2 m height and limited between 1 and 6 m·s-1 (cf. Allen et
al., 1998). The minimum relative humidity was estimated as 100% x the ratio of the saturated
vapour pressure for the minimum and maximum daily temperature, which could be estimated
from the CRU climatology by adding or subtracting half the daily temperature range from the
mean monthly temperature. Here, the minimum temperature is used as an approximation of
the dew point temperature and therefore reduced by 2°C in arid and semi-arid regions, i.e.,
when cumulative water stress is present. RHmin is limited between 20 and 80% (cf. Allen et
al., 1998). For both u2 and RHmin the mean monthly values over the mid-season stage were
used.
The vegetation height is limited between 0.1 and 10 m (Allen et al., 1998). Subject to these
constraints, the vegetation height itself was estimated from the dataset of Hagemann et al.
(1999) by dividing the vegetation roughness length, z0 veg [m], by 0.123 [-]. This returns the
maximum of 10 m for most forest types (6 classes out of 73) and the minimum of 0.1 for most
barren surfaces as deserts and glaciers (7 classes).

In order to calculate the monthly crop factors at the spatial resolution of 0.5°, the phenology
and the relative LAI, as well as the meteorological part of the correction factor of Equation
22, were derived at 0.5° by means of a PCRaster Python script (see Appendix 2). The
vegetation-dependent factors were processed by means of an AML script in ArcInfo and the
0.5° monthly maps resampled to the GLCC resolution of 30”. This results into monthly grids
at 30” that specify the crop factor for the Olson class for each cell. These grids have been
aggregated to a resolution of 0.5° cells and converted back to PCRaster maps as input to PCR-
GLOBWB. As the scaling of the reference potential evapotranspiration to the crop-specific
potential evapotranspiration is linear (Equation 1), the aggregated value is the mean of all 30”
cells. To link the crop factors to the surface types of short and tall vegetation used in PCR-
GLOBWB, the subdivision of Appendix 4 has been used, with an additional distinction being
made between natural vegetation, rain fed crops and irrigated crops in order to substitute any
of these categories by other estimates if desirable. Hence, the overall crop factor for each
vegetation type was calculated as the weighed average of each category per surface type,
given their fractional cover within each grid cell.

Over open water the potential evaporation differs from the reference potential
evapotranspiration as a result of the difference in albedo, surface roughness and the heat
storing capacity of deep water that influences heat transfer. Hence, a cell identified as a lake
or reservoir was characterized as deep water, whereas the remaining cells with rivers were
characterized as shallow water. For the river cells, the crop factor for open water applied to
the channel area itself, as prescribed by the channel width and length used in PCR-GLOBWB,
whilst an additional crop factor applied to the remaining wetland area. Thus, the monthly crop
factor for the fraction open fresh water in each cell was computed as:
 deepcwaterc kk = , if identified as lake or reservoir, else

12 of 46

()

2

2

Xf

kLXXfkLX
k

water

wetlandcchannelchannelwatershallowcchannelchannel
waterc ∆

∆∆−∆−∆∆
= , Equation 23

where kc is the crop factor [-] for the entire fresh water surface, deep and shallow water and
wetland area respectively, ∆Xchannel and ∆Lchannel are the channel width and length [m],
fwater is the fraction of land area within each cell [-], and ∆X2 is the land surface area
within each cell [m2].

For all freshwater surfaces it was assumed that evapotranspiration could only occur over ice-
free surfaces. This was achieved by excluding all months for which the mean monthly air
temperature was below 0°C.
Ice-free shallow water was assumed to have no appreciable heat storing capacity and its crop
factor assumed to be constant with time. It was calculated according to Equation 21 with a
vegetation height of 0.1, the minimum height according to Allen et al. (1998), to account to
the varying influence of surrounding vegetation on the roughness as many rivers have widths
much smaller than the nominal 1 km GLCC resolution. The same value was applied to lakes
and reservoirs in the tropics, which were taken equivalent with an average annual air
temperature of 20°C. Elsewhere, deep water was thought to have some potential heat storing
capacity and wetland vegetation to develop over the growing season, provided that the surface
was ice-free. In both cases, this was simulated by the BATS scheme of Equation 12 using the
mean monthly air temperature from the 1961-1990 climatology with Tmin and Tmax being
defined by the minimum and maximum air temperature over the period that T> 0°C.

Outside the tropical region, the crop factor may decrease by 20 to 30% in early spring due to
heat storage and increase by a similar value in late autumn (Doorenbos and Pruitt, 1977). To
emulate the heat storing capacity of deep water the temperature function was averaged with
the previous month, assigning a value of zero whenever ice was presumed to be present. Over
the ice-free months, the crop factor was then modified by 20% of that of shallow water for
f(T)= 0 and f(T)= 1 respectively., adjusting the values so that shallowcdeepc kk = as expected on

ground of energy conservation.
For the wetland areas, the maximum crop factor was set to 1.2 [-], the minimum varying with
the minimum monthly temperature: for tropical regions, the value was set to 1.0, for
temperate regions without frost to 0.6 and for regions with killing frost at 0.3 [-] based on
values proposed by Allen et al. (1998). Between these extremes, the crop factor was
distributed on the basis of the temperature function f(T), kc being zero during the months with
frost. To account for the effect of humidity and wind speed, the monthly values were adjusted
by the meteorological factor of Equation 22, applying a typical vegetation height of 2 m for
tropical regions and of 1 m elsewhere.

Updates to the handling of evapotranspiration within PCR-GLOBWB

The reference potential evapotranspiration and the crop factors derived from the CRU TS 2.1
dataset necessitate an update to the processing of the evapotranspiration in PCR-
GLOBWBWB. In the model, a distinction is made between bare soil evaporation, which is
drawn from the upper soil layer after deduction of any evaporation of liquid water stored in
the snow cover, and transpiration by vegetation, which is drawn from both soil layers in
proportion to the relative root volume present after deduction of any evaporation of
intercepted rainfall. So far, mainly actual evapotranspiration, e.g., from the ECMWF ERA-40

13 of 46

reanalysis, was imposed. This actual evapotranspiration was fractioned on the basis of
vegetation cover only and merely limited by the availability of soil moisture in the pertinent
layers.
The use of the reference potential evaporation in combination with the crop factor implies that
no distinction between soil evaporation and transpiration is made; kc ranges from a minimum
value for bare soil evaporation, kc min, to a maximum value during the height of the growing
season, kc full, dependent on the LAI (see Figure 2and Equation 21). Hence, fractioning on the
basis of the vegetation cover can be abandoned and the bare soil potential evaporation is taken
to be equivalent to:
 00 ETkES minc ⋅= , Equation 24

and the total potential transpiration to:
 () 00000 ETkkETkETkESETT minccminccc −=⋅−⋅=−= , Equation 25

where ETc is the monthly crop specific potential evapotranspiration, ET0 the potential
reference evapotranspiration, both in [L·T-1] (Equation 1), and kc and kc min [-], are the
monthly crop factor and the minimum crop factor for bare soil evaporation
respectively.

Reductions of the potential bare soil evaporation and the transpiration are directly or
indirectly related to the available soil moisture storage. For the bare soil evaporation, no
reduction is applicable for the saturated fraction, x, of each cell as obtained by the Improved
Arno Scheme of Hagemann and Gates (2003), except that the rate of evaporation cannot
exceed the saturated hydraulic conductivity of the upper soil layer. Likewise, the potential
bare soil evaporation over the unsaturated area, 1-x, is only limited by the unsaturated
hydraulic conductivity of the upper soil layer:
 () () ()()0101 ,min1,min ESkxESkxES Es θ−+⋅= . Equation 26

The uptake of transpiration by plants depends on the total available moisture in the soil layers.
The fraction between the actual and potential transpiration rate is given by:

 () B
EE

tf 3

501

1
−+

=
θθ

 Equation 27

where θE50 is the effective degree of saturation at which the potential transpiration is halved
and B is the coefficient of the soil water retention curve according to Clapp and
Hornberger (1978).

The lack of aeration prevents the uptake of water by root under fully saturated conditions. The
average degree of saturation over the unsaturated fraction of the cell is estimated by:

()

()

−
−−−+

−
−+−−+

==
+

+

1

1

1

1

1

1
1

)(

b

minmax

max
minmaxmax

b

minmax

max
minmaxmax

E

WW

WW
WWbW

WW

WW

b

b
WWbW

w
xwθ , Equation 28

where w is the sub-grid distributed maximum moisture storage and w(x)the actual storage
corresponding to the fraction x of saturation, the uppercase symbols refer to the

14 of 46

minimum and maximum storage capacities and the cell-averaged storage (Wmin, Wmax
and W respectively [m]) and b is the shape factor describing the distribution of w.

In the above, the root fraction, r frac, is only considered in obtaining the parameters B and θE50
of the scaling function, for which the soil water retention characteristics of layers i were
weighed by both the root fraction and the maximum storage capacity per layer. The actual
transpiration rate is partitioned over the upper two soil layers on the basis of the relative
storage Wi/ΣWi by local soil water availability, if applicable.

Downscaling CRU monthly values to daily model input

Because of the presence of non-linear processes like interception, the monthly fields of the
CRU TS 2.1 have to be downscaled to daily fields in order to force PCR-GLOBWB
successfully. The required input consists of precipitation, temperature and potential
evapotranspiration which were broken down by means of daily fields of temperature and
precipitation as obtained from the ERA-40 reanalysis. The ERA-40 re-analysis was preferred
as this provides a high-quality global analysis of the atmospheric conditions over the past four
decades (Uppala et al., 2005) regardless of errors in the absolute errors like the severe
overestimation of precipitation over tropical areas (Troccoli and Kållberg, 2004). In this
manner, the CRU forcing is directly applicable to the period 1958-2001 for which calendar
years actual ERA-40 results are available. Prior to 1958, ERA-40 years should be used as
proxy for the then present atmospheric conditions and selected on the basis of annual
temperature and precipitation over larger areas, e.g., continents, as witnessed by the CRU TS
2.1 dataset. The daily fields of precipitation and temperature were obtained from six 6-hourly
forecasts from 12 hours UTC onwards where the first two forecasts were removed to avoid
any bias due to spin-off effects. Thus, 24-hour forecasts were obtained from 00 hours UTC
onwards, being the daily sum of convective and large-scale precipitation for rainfall and the
average 2m-air temperature for the temperature.
For consistency, the forcing complied entirely with the CRU dataset, the aggregated daily
values returning the monthly statistic, although one could argue that the ERA-40 daily
temperature fields are more likely to approximate the actual conditions. In the case of
temperature, a simple additional anomaly was used:
 ()ERACRUERA TTTT −+= , Equation 29

where T denotes the daily temperature [°C] and T the mean monthly value for the ERA-40
and CRU datasets.

To obtain daily reference potential evapotranspiration, E0 [m·day-1], the monthly value was
multiplied with the normalized ERA-40 daily temperature, which was transformed to Kelvins
to take care of freezing:

2.273

2.273
00 +

+=
ERA

ERA

T

T
EE . Equation 30

For the precipitation the preferred anomalies were also multiplicative:

ERA

CRU
ERA P

P
PP = . Equation 31

15 of 46

Although ERAP is always greater than zero, severe rounding errors may occur whenever it is
very small. To overcome this problem, a threshold was defined as the mean daily precipitation
for the present month according to the CRU dataset that had to be exceeded for the
multiplicative anomaly to be used:

CRU

CRU
crit W

P
P = , Equation 32

where CRUW is the monthly number of wet days.

If the threshold was not exceeded, as might be expected in some arid regions, a daily rainfall
estimate was used for a limited number of days. First, a temperature limit for the ERA-40 re-
analysis was estimated by linear interpolation:

 ()
N

W
TTTT CRU

ERAminERAmaxERAminERAcrit −+= , Equation 33

where Tmax and Tmin are the maximum and minimum daily ERA-40 temperature for a given
month, CRUW is the monthly number of wet days in the CRU dataset and N is the total

number of days in the current month.

For each month the number of days that the ERA-40 temperature falls below this threshold is
calculated as an approximation of the wet days, ERAW , and if the temperature is evenly

distributed this will approximate CRUW . The corresponding daily rainfall is applied for each

day that ERAcritERA TT < and calculated as:

ERA

CRU

W

P
P =ˆ . Equation 34

Results

CRU timeseries and climatology

Of all variables contained by the CRU TS 2.1 dataset that are directly or indirectly required
by PCR-GLOBWB, the mean annual values for the climatology 1961-1990 are presented in
Figure 3.

16 of 46

Figure 3: Mean annual values of CRU variables of interest for the climatology 1961-1990.
Top row: precipitation (PRE, mm per year) and temperature (TMP, °C); bottom row: number of wet days (days
per year), cloud cover (fraction), vapour pressure (Pa) and daily temperature range (°C).

For the primary variables of precipitation and temperature also temporal variability was
considered. Over the full period of the CRU TS 2.1 dataset monthly values were summed to
annual totals. From these annual totals, the mean and standard deviation were calculated for
three different periods: i) the total length of the CRU TS 2.1 series, ii) the reference
climatology period 1961-1990, and iii) the period 1958-2001, covering most of the ERA-40
reanalysis period. These periods were subsequently compared by means of Student’s t-test
where the t-statistic was calculated as:

2

2
2

1

2
1

21

n

s

n

s

xx
t

+

−= , Equation 35

where x stands for the mean, s2 for the variance and n for the number of years for the sub-
periods 1 and 2 respectively. t is the test statistic with n1+n2-2 degrees of freedom.

This test statistic was calculated for each cell with respect to the climatology and binned for
four absolute significance levels (0.01, 0.05, 0.10 and 0.25 two-tailed; Figure 4).

Figure 4: Significance of differences in mean between the climatology over 1961-1990 and the total CRU TS 2.1
period 1901-2002 (top row) and the ERA-40 sub-period 1958-2001 (bottom row) for precipitation (left) and
temperature (right). Red colours reflect that the climatology has a lower mean, green colours that it has a higher
mean than the comparison period.

For the entire globe and all continents the variation in precipitation and temperature was
calculated over the full length of the CRU TS 2.1 period (1901-2002; Figure 5). For the

17 of 46

climatology over the years 1961-1990, also the zonal distribution of both variables was
calculated for each season (Figure 6

500

750

1000

1250

1500

1750

2000

1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000

Year

P
re
c
ip
it
a
ti
o
n
 (
m
m
)

World Europe Asia North America

South America Africa Oceania

0.0

5.0

10.0

15.0

20.0

25.0

30.0

1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000

Year

T
e
m
p
e
ra
tu
re
 (
°
C
)

World Europe Asia North America

South America Africa Oceania
Figure 5: Variations in annual global and continental precipitation (left) and temperature (right) over the CRU
TS 2.1 period 1901-2002.

-40

-20

0

20

40

-90-60-300306090

Latitude (°)

T
e
m
p
e
ra
tu
re
 (
°
C
)

DJF MAM JJA SON

0

100

200

300

-90-60-300306090

Latitude (°)

P
re
c
ip
it
a
ti
o
n
 (
m
m
)

DJF MAM JJA SON

Figure 6: Seasonal variation in precipitation left and temperature (right) per half-degree zone for the 1961-1990
climatology: DJF (December-January-February), MAM, JJA, and SON.

To evaluate the discrepancy between the ERA-40 reanalysis and the CRU TS 2.1 dataset, the
difference between the two datasets has been calculated for the mean annual precipitation and
temperature over the period 1958-2001 (Figure 7).

Figure 7: Difference fields for precipitation (left), and temperature (right) between the ERA-40 reanalysis and
CRU dataset over the period 1958-2001.

Holdridge life zone classification

18 of 46

The Holdridge life zone classification calculated from the CRU climatology over the years
1961-1990 can be compared to the global coverage generated by Leemans (1989) on the basis
of a dataset of 5500 stations with monthly temperature and precipitation, distributed over the
world and covering between 10 and 40 years within the preferred period of 1931-1960
(Leemans, 1990). The aggregated dataset was used that combines the 39 Holdridge life zone
classes into 14 larger entities (Cold Parklands; Forest Tundra; Boreal Forest; Cool Desert;
Steppe; Temperate Forest; Hot Desert; Chaparral; Warm Temperate Forest; Tropical Semi-
Arid; Tropical Dry Forest; Tropical Seasonal Forest; Tropical Rain Forest). A cross-table of
this map with the CRU-based classification was made and the extended CRU classification
re-classified accordingly. In total, 44% of the land surface had no consistent match in
Leemans’ aggregated life zones classification, with 7% of the mismatch attributable to a
difference in land mask. The poorest agreement concerned the polar zones and some tropical
regions, due to differences in temperature and precipitation over these areas (Figure 8).

Figure 8: Aggregated Holdridge Life zones classification according to Leemans (1989) for the CRU 1961-
1990 climatology. Areas without a consistent match are shaded.

Reference potential evapotranspiration

The monthly reference potential evapotranspiration was calculated for the period 1901-2002
covered by the CRU TS 2.1 dataset and summed to yield the annual total. Similar to the
primary variables of precipitation and temperature, the differences between the three main
periods were tested for their significance (Figure 9).

19 of 46

c) d)

b)a)

Figure 9: a) Mean and b) standard deviation in reference potential evapotranspiration E0 over the period 1961-
1990 (CRU baseline climate); c) significance of differences in mean E0 over the entire CRU TS 2.1 period
(1901-2002) and d) the period of the ERA-40 reanalysis (1958-2001).

For the entire globe and all continents the variation in the reference potential
evapotranspiration, E0, was equally calculated over the full length of the CRU TS 2.1 period
(1901-2002; Figure 10.a). For the climatology over the years 1961-1990, also the zonal
distribution of E0 was calculated for each season.

20 of 46

500

750

1000

1250

1500

1750

2000

1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000

Year

R
e
fe
re
n
c
e
 p
o
te
n
ti
a
l
e
v
a
p
o
tr
a
n
s
p
ir
a
ti
o
n
 (
m
m
)

World Europe Asia North America South America Africa Oceania A)

0

100

200

300

400

500

600

700

-90-60-300306090

Latitude (°)

E
0
 (
m
m
)

DJF MAM JJA SON
B)

Figure 10: Variations in annual global and continental reference potential evapotranspiration, E0, over the CRU
TS 2.1 period 1901-2002; and, b) seasonal variation in E0 per half-degree zone for the 1961-1990 climatology:
DJF (December-January-February), MAM, JJA, and SON.

No direct comparison was possible between the CRU and ERA-40 evapotranspiration as the
former was calculated as reference potential evapotranspiration in this study and the latter was
reported as the actual evapotranspiration from the ECMWF land surface model.

Crop factors

Crop factors were calculated for the GLCC dataset as described by the methodology above.
The actual crop factor was based on the vegetation characteristics linked to the GLCC dataset
and the meteorological correction factor of Equations 20 and 22. The length of the growing
season could be constrained by temperature or moisture availability. Figure 11 shows the
global distribution of the estimated crop factor on the basis of the water balance of Equation
14. It identifies the major arid regions of the world as well as regions with severe seasonal
water shortage such as the Mediterranean, part of the Asian monsoon-belt (e.g., India), sub-
tropical South America, and the Arctic deserts (cf. Figure 8). This crop factor not only
influences the length of the growing season but also the rate at which the vegetation
transforms from one stage to the other (Figure 2).

21 of 46

Figure 11: Crop factor optimized for moisture availability.

The length of the entire growing season and the optimum season are shown in Figure 12.
Except for the arctic and some arid regions, most areas reveal a considerable growing season.
The length of the growing season with optimum conditions is much lower, especially in
temperate areas where temperature is the limiting factor or in semi-arid or arid regions, where
moisture is a limiting factor. Some seasonality is also present over the tropics. For Africa, this
is also shown by the Holdridge classification (Figure 8). It is less widespread, however, in
South-America, and seasonality may be introduced here as the optimized crop factor of Figure
11 that is at its maximum value. The influence of seasonality on growth is equally manifested
by the seasonal relative LAI (Figure 13).

a) b)

Figure 12: Length of growing season (months per year): a) full season, b) optimum season.

22 of 46

Figure 13: Seasonal variation in relative LAI. From topleft, clockwise: DJF, MAM, JJA, SON

The actual crop factor ranges between the minimum of 0.2 [-] for bare surfaces to the
maximum that depends on height (Equation 20). Theoretically, the maximum value is limited
to 1.2 [-] but this value can increase as result of the local meteorology (Equation 21; Figure
14). Increased values are found above areas that have a low relative humidity or high wind
speeds. Areas with increased crop factors are present over the semi-arid regions of North
America, the Mediterranean, the Sahara, Central Asia and Australia. The largest increase are
found over Greenland and Spitsbergen and northwest South-America. As there is no growing
season in the polar region the elevated values are of no direct concern. In South-America the
higher values are the result of low vapour pressures (Figure 3) with exceptional high wind
speeds of over 20 m·s-1during summer. Once corrected for the local meteorology, maximum
crop factors for tall vegetation reach a maximum value of 1.26. For the short vegetation type,
the maximum value is 1.13 as the shorter vegetation height yields a lower maximum crop
factor to start with (Equation 20; Appendix 4). The minimum and maximum values of the
crop factors of short and tall vegetation, aggregated from 30 arc sec to 0.5°, are shown in
Figure 15. Overall, this picture agrees well with the expectation that tall vegetation will have
larger crop factors as this vegetation type is generally taller and perennial, thus having less
seasonal variation than short vegetation types that include annuals like true crops. There is no
increase in crop factors over true deserts covered by short vegetation only. Remarkably, some
areas with lower vegetation of the same signature are found in other areas, like the northeast
of the USA and the Congo basin. Partly, this corresponds with urban areas or with wrongly-
classified cells (e.g., deserts occurring within the rain forest of the Congo basin). In general,
these areas are small, covering less than 1% of each cell, and can be expected to have little
influence on the total outcome of the model.

23 of 46

Figure 14: Meteorological correction factor of Equation [X] for () 13
3.0

=h .

Figure 15: Minimum and maximum values of the crop factor for short (left) and tall vegetation as obtained for
the GLCC dataset. Grey areas indicate regions where a particular type is absent.

Open water evapotranspiration is modified by temperature only, heat storage effects leading
to a shift in time compared to the air temperature. The maximum crop factor amounts to 1.48
in dry areas, the minimum is zero in regions where seasonal ice covers occur.

24 of 46

Minimum
Maximum

Figure 16: Minimum and maximum crop factors for open water evaporation

Conclusions

This report describes in detail the parameterization and particularities of PCR-GLOBWB
related to CRU forcing. Emphasis is placed on evapotranspiration, as this requires the
formulation of crop factors and the calculation of reference potential evapotranspiration
according to the FAO guidelines (Allen et al., 1998). Following the land surface division in
PCR-GLOBWB, crop factors have to be defined for three surfaces (i.e., short and tall
vegetation and open freshwater) and over time. The basic assumption that natural vegetation
and planted crops strive to maximize the available resources underlie the definition of the
crop factors. Temperature and moisture availability limit the available growing season and is
relative only. The influence of the actual vegetation, as it arises from local conditions as
nutrient availability etc., is taken into account through the parameterization of the LAI and
vegetation heights as associated with the GLCC dataset.
Large differences exist between the ERA-40 and CRU dataset and between the different
periods within the CRU dataset itself (i.e., climatology or full time series). In term of
significance, temperature appears to differ more often than precipitation. However,
temperature is more constant and significance in the difference-of-means test is lost due to the
large variability of rainfall. Particular over tropical areas the ERA-40 dataset predicts much
more precipitation than the CRU whereas the trend is reversed over temperate regions.
Differences within the CRU dataset arise from changes in the density of the observation
network (Congo, South America) but some changes might be attributed to different degrees of
activity of large-scale climate phenomena as the ENSO over the respective periods (e.g.,
south of USA). Earlier parts of the CRU TS 2.1 should therefore be used with care.
In general, the CRU climatology leads to a consistent vegetation distribution as indicated by
the Holdridge classifications. Discrepancies between the original dataset of Leemans (1989)
and the CRU-based distribution mainly arises as a result of an inclusion of more stations and a
different incorporation of surface elevation.
The crop factors from the CRU fall within the range of reasonable estimates as listed by Allen
et al. (1998) and Doornkamp and Pruitt (1977). Also, there is a good agreement with reported
growing seasons and phases. Since these crop factors partly alleviate the differences in the
reference potential evapotranspiration as found for the different periods of the CRU database,
the CRU-derived climatology of crop factors can be applied to the entire CRU TS 2.1 period,
provided it can be assumed land cover remains unaltered, although this may result in an
underestimation of the variability in actual evapotranspiration for the earlier part of the CRU
period.

25 of 46

References
Allen, R.G., Pereira, L.S., Raes, D., Smith, M. (1998). Crop evapotranspiration. FAO

Irrigation and drainage paper 56. FAO, Rome.
Clapp, R.B. and Hornberger, 1978. G.M. Empirical Equations for Some Soil Hydraulic

Properties. Water Resources Research 14, 601-604.
Dickinson, R.E., Henderson-Sellers, A., Kennedy, P.J. (1983). Biosphere-Atmosphere

Transfer Scheme (BATS). NCAR technical note, Boulder.
Dingman, S.L. (1994). Physical Hydrology. McMillan, New York.
Doorenbos, J., Pruitt, W.O. (1977). Crop water requirements. FAO Irrigation and drainage

paper 24. FAO, Rome.
Hagemann, S., Botzet, M., Dümenil, L., and Machenhauer, B.,1999 Derivation of global

GCM boundary conditions from 1 km land use satellite data
Max-Planck-Institute for Meteorology, Report 289, Hamburg, Germany.
(Report available electronically from: http://www.mpimet.mpg.de/deutsch/Sonst/Reports/
HTMLReports/289/)
Hagemann, S. & Gates, L.D., 2003. Improving a subgrid runoff parameterization scheme for

climate models by the use of high resolution data derived from satellite observations.
Climate Dynamics 21, 349–359..

Leemans, R., 1989. Global Holdridge Life Zone Classifications. Digital Raster Data on a 0.5-
degree Geographic (lat/long) 360x720 grid. Laxenberg, Austria: IIASA. Available
from http://www.ngdc.noaa.gov/ecosys/cdroms/ged_iia/datasets/a06/lh.htm#top

Leemans, R. 1990. Possible changes in natural vegetation patterns due to global warming.
IIASA Working Paper WP90-08 and Publication Nr 108 of the Biosphere Dynamics
Project. Laxenburg, Austria.

Mitchell, T.D. and P.D. Jones 2005. An improved method of constructing a database of
monthly climate observations and associated high-resolution grids. International
Journal of Climatology, 2005. 25(6): p. 693-712.

New, M., Hulme, M., Jones, P. (1999). Representing twentieth-century space-time climate
variability. Part I: Development of a 1961-1990 mean monthly terrestrial climatology.
Journal of Climate 12, 829-856.

New, M., Hulme, M., Jones, P. (2000). Representing twentieth-century space-time climate
variability. Part II: Development of 1901-96 monthly grids of terrestrial surface
climate. Journal of Climate 13, 2217-2238.

New, M., Lister, D., Hulme, M., Makin, I. (2002). A high-resolution data set of surface
climate over global land areas. Climate Research. Vol. 21, 1-25.

Olson, J.S., (1994a). Global ecosystem framework-definitions: USGS EROS Data Center
Internal Report, Sioux Falls.

Olson, J.S., (1994b). Global ecosystem framework-translation strategy: USGS EROS Data
Center Internal Report, Sioux Falls.

Troccoli, A. and P. Kållberg, 2004. Precipitation correction in the ERA-40 reanalysis, in
ERA-40 Project Report Series 13. 2004, ECMWF: Reading. p. 10.

Uppala, S.M. et al. 2005, The ERA-40 re-analysis. Quarterly Journal of the Royal
Meteorological Society, 2005. 131: p. 2961-3012.

26 of 46

Appendix 1: Code of cru_grid2asc.f

 PROGRAM CRUTSS
C
 IMPLICIT NONE
C Reads in new 0.5° CRU global gridded dataset containing the years 1901-2000
C and converting them to individual ascii files for the surface fields
specified in
C VARID. All data are processed as are. RvB, UU, April 2008
C
 INTEGER NCOLS,NROWS,NMONTHS
 PARAMETER (NCOLS= 720,NROWS= 360,NMONTHS= 12)
 INTEGER STARTYEAR, ENDYEAR, NVAR
 PARAMETER (STARTYEAR= 1901, ENDYEAR= 2002, NVAR= 1)
 INTEGER MONTHINDEX,YEARINDEX,VARINDEX
 INTEGER XCNT,YCNT
 INTEGER IVAL(NCOLS,NROWS,NMONTHS)
 CHARACTER*(*) PRFX, SFFX
 PARAMETER (PRFX= "cru_xxx",SFFX= '.asc')
 CHARACTER*30 GRIDFILE,INFILE
 CHARACTER*18 ASCFILE
 CHARACTER*2 MONTHSTR
 CHARACTER*3 VARID(NVAR),VARSTR
 CHARACTER*4 YRSTR
C
C DATA VARID /"wet","vap","tmp"/
 DATA VARID /"dtr"/
 GRIDFILE="cru_ts_2_10.1901-2002.xxx.grid"
 DO VARINDEX=1,NVAR
 VARSTR= VARID(VARINDEX)
 INFILE= GRIDFILE
 INFILE(23:25)= VARSTR
 OPEN(UNIT=1,FILE= INFILE,STATUS="OLD",ERR= 999)
 DO YEARINDEX= STARTYEAR,ENDYEAR
 CALL STRCONV(YEARINDEX,YRSTR,4)
 READ (1,*) IVAL
 DO MONTHINDEX= 1,NMONTHS
 CALL STRCONV(MONTHINDEX,MONTHSTR,2)
 WRITE (*,'(4X,A3,1X,I4,1X,I2)') VARSTR,YEARINDEX,MONTHINDEX
 ASCFILE= PRFX//YRSTR//"_"//MONTHSTR//SFFX
 ASCFILE(5:7)= VARSTR
 OPEN(UNIT=2,FILE= ASCFILE,STATUS= "REPLACE",ERR= 998)
 DO YCNT= NROWS,1,-1
 DO XCNT= 1,NCOLS
 WRITE (2,'(I5,1X,$)') IVAL(XCNT,YCNT,MONTHINDEX)
 END DO
 WRITE (2,*)
 END DO
 CLOSE(UNIT=2,STATUS= "KEEP")
 END DO
 END DO
 CLOSE(UNIT=1)
 END DO
 GOTO 999
998 WRITE (*,'(2X,"Program terminated with error")')
 GOTO 1000
999 WRITE (*,'(2X,"Program terminated")')
1000 END
C
C ***
 SUBROUTINE STRCONV(XVAL,XSTR,DIGITS)
C
C DECLARATION
C
 INTEGER XVAL, CNT, DIGITS, ID1, ID2
 CHARACTER*(4) XSTR
 CHARACTER*1 CD

27 of 46

C
C STEPPING THROUGH DIGITS
 ID2= 0
 XSTR= ''
 DO CNT= 1,DIGITS
 ID1= ID2
 ID2= INT(XVAL*0.1**(DIGITS-CNT))
 ID1= ID1*10
 CD= ACHAR(INT(ID2-ID1)+48)
 XSTR(CNT:CNT)= CD
 END DO
C
 RETURN
C
 END

Python script mapgen_cru.py
#Converts ascii files from the CRU TS1 dataset to pcraster maps

import os, zlib, zipfile
import pcraster as pcr

def zipToDir(file, dir):
 try:
 os.mkdir(dir, 0777)
 except:
 pass
 zfobj = zipfile.ZipFile(file)
 for name in zfobj.namelist():
 if name.endswith('\\'):
 try:
 os.mkdir(os.path.join(dir, name))
 except:
 pass
 else:
 try:
 outfile = open(os.path.join(dir, name), 'r')
 outfile.close()
 except:
 outfile = open(os.path.join(dir, name), 'w')
 outfile.write(zfobj.read(name))
 outfile.close()

def ascToMap(FileNameIn,FileNameOut,CloneFile):
 command = 'asc2map %s %s --clone %s -S -m -999' %
(FileNameIn,FileNameOut,CloneFile)
 os.system(command)

#declaration: parameter suffices of input files and number of parameters
ParID= ['dtr'] # 'pre','cld','tmp','vap','wet'] #
#folder with data
PathCRU= 'i:\\cru05_timeseries\\newlygridded'
#start and end year of sequence
StartYear= 1901
EndYear= 2002
NMonths= 12
#Clone map definition
CloneFile= '..\\..\\globalclone.map'

print 'PROCESSING OF CRU TS1 dataset of monthly global meteorological fields'
for Par in ParID:
 print '\tProcessing %s' % Par
 #sets input path and tests for the existence of last written data file after
 #checking for existing zip-files and extracting any non existing data
 print '\tchecking for availability of non-processed data in zip-files'
 PathIn= PathCRU
 if os.path.exists(PathIn):
 os.chdir(PathIn)

28 of 46

 else:
 break
 PathOut= os.path.join(PathIn,Par)
 try:
 FileNameIn= 'cru05_%s_asc.zip' % (Par) #archive with monthly ascii
files
 zipToDir(FileNameIn,PathOut)
 FileNameIn= 'cru05_%s.zip' % (Par) #archive with monthly
pcraster maps
 zipToDir(FileNameIn,PathOut)
 except:
 print '\t\tno exisiting zipfiles found'
 pass
 #opening zip files for output
 #-monthly text and map files, ascii output and stack
 FileNameOut= 'cru05_%s_asc.zip' % (Par) #archive with monthly ascii
files
 AsciiZip= zipfile.ZipFile(FileNameOut,'w',zipfile.ZIP_DEFLATED)
 FileNameOut= 'cru05_%s.zip' % (Par) #archive with monthly pcraster maps
 StackZip= zipfile.ZipFile(FileNameOut,'w',zipfile.ZIP_DEFLATED)
 #loop for years
 PathIn= PathOut
 for YearOrd in range(StartYear,EndYear+1):
 #processing files if file of interest found
 print '\tconverting ASCII to CSF'
 print '\t\t%s' % YearOrd
 if os.path.exists(PathIn):
 os.chdir(PathIn)
 else:
 break
 FileNameCheck= 'cru_%s%04d_%02d.asc' % (Par,EndYear,NMonths)
 CheckFileExists= 0
 while CheckFileExists == 0:
 try:
 cf= open(FileNameCheck,'r')
 CheckFileExists= 1
 cf.close()
 except:
 CheckFileExists= 0
 #= > continuation when file found
 #generating maps for present variable
 #loop for months
 for MonthOrd in range (1,NMonths+1):
 #filenames
 FileNameIn= 'cru_%s%04d_%02d.asc' % (Par,YearOrd,MonthOrd)
 FileNameOut= 'cru_%s%04d.%03d' % (Par,YearOrd,MonthOrd)
 #conversion
 CheckFileExists= 1
 try:
 cf= open(FileNameIn,'r')
 cf.close()
 except:
 CheckFileExists= 0
 if CheckFileExists== 1:
 ascToMap(FileNameIn,FileNameOut,CloneFile)
 #zipping files
 try:
 AsciiZip.write(FileNameIn)
 StackZip.write(FileNameOut)
 except:
 pass
 #closing zips
 AsciiZip.close()
 StackZip.close()
 #removing files in present path
 for Root, Dirs, Files in os.walk(PathIn):
 if len(Dirs) > 0:
 print 'subdirectories present in %s !' %(Root)

29 of 46

 break
 else:
 for FileCount in range(0,len(Files)):
 FileNameOut= Files[FileCount]
 os.remove(FileNameOut)

30 of 46

Appendix 2: Python script cru_proc.py
Processes CRU Timeseries and Climatology to derive:
1) climatology over the years 1961-1990
2) detect any change in the mask over the CRU timeseries
3) create a patch for any area missing between the climatology and timeseries
4) update the input where necessary (done internally) and
calculate the reference potential evapotranspiration over the globe
5) return statistics
6) calculate temporal course of water stress and temperature in order to
determine growing season
7) calculate temporal statistics of annual precipitation, temperature and
evapotranspiration
#RvB, UU, June 2008
#includes new parameterization of the growing season

import os, zlib, zipfile,shutil,calendar
import pcraster as pcr

def zipToDir(file, dir, a_name):
 #extracts all existing file from directory
 try:
 os.mkdir(dir, 0777)
 except:
 pass
 zfobj = zipfile.ZipFile(file)
 for name in zfobj.namelist():
 if name.endswith('/'):
 try:
 os.mkdir(os.path.join(dir, name))
 except:
 pass
 else:
 try:
 outfile = open(os.path.join(dir, name), 'r')
 outfile.close()
 except:
 outfile = open(os.path.join(dir, name), 'w')
 outfile.write(zfobj.read(name))
 outfile.close()

def generateNameT(RootName,Number):
 #generates file name akin to old pcraster py generateNameT
 #-split RootName into different elements, keeping root of file name only
 # to expand file name and convert Number to string: takes up to 8 digits
timesteps
 NumStr= str(int(Number))
 NrChar= len(NumStr)
 if NrChar>8:
 print 'number exceeds allowable bounds'
 else:
 FileNameList= (RootName.split('/'))
 FileNameIn= FileNameList[len(FileNameList)-1][0:11-NrChar]
 while len(FileNameIn)<8:
 FileNameIn= FileNameIn+'0'
 FileNameIn= FileNameIn+'000'
 if len(NumStr)<3:
 while len(NumStr)<3:
 NumStr= '0'+NumStr
 NrChar= len(NumStr)
 FileNameOut= ''
 for icnt in range(0,12-NrChar-1):
 FileNameOut= FileNameOut+FileNameIn[icnt]
 for icnt in range(0,NrChar):
 FileNameOut= FileNameOut+NumStr[icnt]
 FileNameIn= FileNameOut
 FileNameOut= ''
 for icnt in range(0,8):
 FileNameOut= FileNameOut+FileNameIn[icnt]

31 of 46

 FileNameOut= FileNameOut+'.'
 for icnt in range(8,11):
 FileNameOut= FileNameOut+FileNameIn[icnt]
 for NrChar in range(len(FileNameList)-2,-1,-1):
 FileNameOut= FileNameList[NrChar]+'/'+FileNameOut
 return FileNameOut

MAIN
spatial attributes and global options
CloneMap= 'maps/globalclone.map'
pcr.setclone(CloneMap)
pcr.setglobaloption('radians')
cruClone= pcr.cover(pcr.readmap(os.path.join('maps','cru_clone.map')),0)
duration of total timeseries
NMonths= 12
StartYear= 1901
EndYear= 2002
CRU timeseries parameters and conversion factors
(not used on original maps and derived climatology)
to: millimeter,degree Celsius, percentage, hPa and days
CRUArchivePath= '../../archive/crutss'
CRUTSSPath= 'newlygridded'
CRUClimPath= 'climatology'
CRUGrowthPath= 'growingseason'
CRUPeriodPath= 'stats'
CRUTSSParamList= ['tmp','pre','cld','vap','wet','dtr']
CRUTSSConvList= [0.1,0.1,0.1,0.1,0.1,0.01,0.1]
ClimStart= 1961
ClimEnd= 1990
JulianDay= [1,32,60,91,121,152,182,213,244,274,305,335,366]
0) Start
print 'Processing CRU climatology and timeseries'
 1) deriving climatology
print '\t%s' % 'calculating climatology over 1961-1990 for:'
ParamCnt= 0
CRUTSSMask= pcr.boolean(1)
Mask= [pcr.ordinal(0)]*len(CRUTSSParamList)
for Param in CRUTSSParamList:
 -echoing parameter to screen
 print '\t\t%s' % Param
 -unzipping all data to directory
 PathOut= os.path.join(CRUTSSPath,Param)
 FileNameIn= os.path.join(CRUArchivePath,'cru_%s.zip' % (Param))
 try:
 os.mkdir(CRUTSSPath)
 os.mkdir(PathOut)
 except:
 pass
 zipToDir(FileNameIn,PathOut)
 -initializing bins
 SX= [pcr.scalar(0)]*NMonths
 SSQ= [pcr.scalar(0)]*NMonths
 N= [pcr.scalar(0)]*NMonths
 for YearOrd in range(StartYear,EndYear+1):
 for MonthOrd in range(1,NMonths+1):
 ID= pcr.ordinal(YearOrd*100+MonthOrd)
 X= pcr.readmap(os.path.join(PathOut,'c%s%04d.%03d' %\
 (Param,YearOrd,MonthOrd)))
 XValid=
pcr.ifthenelse((X+2730)>=0,pcr.boolean(1),pcr.boolean(0))
 XValid= pcr.cover(XValid,pcr.boolean(0))
 if YearOrd == StartYear and MonthOrd == 1:
 Mask[ParamCnt]= pcr.ifthenelse(XValid,ID,Mask[ParamCnt])
 else:
 Mask[ParamCnt]=
pcr.ifthenelse(pcr.pcrand(pcr.pcrnot(XValid),\
 (Mask[ParamCnt] > 0)),ID,Mask[ParamCnt])
 if YearOrd >= ClimStart and YearOrd <= ClimEnd:

32 of 46

 adding data
 SX[MonthOrd-1]= SX[MonthOrd-1]+X
 SSQ[MonthOrd-1]= SSQ[MonthOrd-1]+X**2
 N[MonthOrd-1]= N[MonthOrd-
1]+pcr.ifthenelse(XValid,pcr.scalar(1),0)
 for MonthOrd in range(1,NMonths+1):
 -calculating mean and standard deviation
 AVG= pcr.ifthen(N[MonthOrd-1]>=1,SX[MonthOrd-1]/N[MonthOrd-1])
 SD= pcr.ifthen(N[MonthOrd-1]>=1,\
 1/N[MonthOrd-1]*(N[MonthOrd-1]*SSQ[MonthOrd-1]-SX[MonthOrd-
1]**2)**0.5)
 pcr.report(AVG,os.path.join(CRUClimPath,'clm%sav.%03d' %
(Param,MonthOrd)))
 pcr.report(SD,os.path.join(CRUClimPath,'clm%ssd.%03d' %
(Param,MonthOrd)))
 -reporting mask and updating ParamCnt
 CRUTSSMask= pcr.ifthenelse(pcr.pcrand(Mask[ParamCnt] <> \
 pcr.ordinal(StartYear*100+1),\
 Mask[ParamCnt] > 0),pcr.boolean(0),CRUTSSMask)
 pcr.report(Mask[ParamCnt],os.path.join(CRUClimPath,'cru_ext%s.map' % Param))
 ParamCnt+= 1
 2) any change in landmask over years and betweem params
pcr.report(CRUTSSMask,os.path.join(CRUClimPath,'cru_extent.map'))
test,testValid= pcr.cellvalue(pcr.mapminimum(pcr.scalar(CRUTSSMask)),1)
if test == 0:
 some error occurred, no further processing
 print '\t\tCRU timeseries is not contiguous over space and time'
 All done
print '\t\tall CRU fields processed'
 3) create patch for climatology on the basis of holdridge classification and
nearest point
-conditional processing if CRUTSSMask returns only true values
print '\t%s' % 'creating patch for climatology of wind speed and radiation'
print '\t%s' % 'on the basis of the nearest cell with same Holdridge
classification'
-Holdridge classification
PrecAnnual= pcr.scalar(0)
TempAnnual= pcr.scalar(0)
for MonthOrd in range(1,NMonths+1):
 PrecAnnual= PrecAnnual+pcr.readmap(os.path.join(CRUClimPath,'clm%sav.%03d' %
('pre',MonthOrd)))
 TempAnnual= TempAnnual+pcr.readmap(os.path.join(CRUClimPath,'clm%sav.%03d' %
('tmp',MonthOrd)))
PrecAnnual= pcr.scalar(0.1)*PrecAnnual
TempAnnual= pcr.scalar(0.1/12.0)*TempAnnual
HolClass= pcr.lookupnominal('maps/holdridge_classification.tbl',\
 PrecAnnual,TempAnnual)
pcr.report(PrecAnnual,os.path.join(CRUClimPath,'clm%stot.map' % 'pre'))
pcr.report(TempAnnual,os.path.join(CRUClimPath,'clm%stot.map' % 'tmp'))
pcr.report(HolClass,'maps/holdridge.map')
HolClass= pcr.cover(HolClass,0)
-area covered by climatology and ID map
Param= 'rad'
X= pcr.readmap(os.path.join(CRUClimPath,'c%s%04d.%03d' %\
 (Param,6190,1)))
CRUClimMask= pcr.ifthenelse(X >= 0,pcr.boolean(1),pcr.boolean(0))
Param= 'wnd'
X= pcr.readmap(os.path.join(CRUClimPath,'c%s%04d.%03d' %\
 (Param,6190,1)))
CRUClimMask= pcr.cover(pcr.ifthenelse(pcr.abs(X) >=
0,CRUClimMask,pcr.boolean(0)),0)
CRUTSSMask= pcr.cover(pcr.ifthenelse(Mask[0]>0,CRUTSSMask,pcr.boolean(0)),0)
CRUPatch= pcr.pcrxor(CRUClimMask,CRUTSSMask)
CRUClimID= pcr.nominal(pcr.uniqueid(CRUClimMask))
pcr.report(CRUClimMask,'maps/cruclimmask.map')
pcr.report(CRUPatch,'maps/crupatch.map')
CRUPatchID= pcr.nominal(0)
for Class in range(1,57):

33 of 46

 -stepping through holdridge zones
 CRUClimIDSel= pcr.ifthenelse(HolClass == pcr.nominal(Class),\
 CRUClimID,0)
 CRUClimIDSpread= pcr.spreadzone(CRUClimIDSel,pcr.scalar(0),pcr.scalar(1))
 CRUPatchID= pcr.ifthenelse(pcr.pcrand(CRUPatch,HolClass ==
pcr.nominal(Class)),\
 CRUClimIDSpread,CRUPatchID)
CRUPatchID= pcr.ifthenelse(CRUPatch,CRUPatchID,CRUClimID)
pcr.report(CRUPatchID,'maps/crupatchid.map')
-patch constructed
print '\t\t%s' % 'patch constructed'
 4) Calculate evapotranspiration
print '\t%s' % '\tcalculating reference evapotranspiration'
-creating new climatology
print '\t\t%s' % 'patching wind and radiation fields'
for MonthOrd in range(1,NMonths+1):
 for Param in ['rfr','wnd']:
 X= pcr.readmap(os.path.join(CRUClimPath,'c%s%04d.%03d' %\
 (Param,6190,MonthOrd)))
 Y= pcr.ifthenelse(CRUPatch,pcr.areaaverage(X,CRUPatchID),X)
 pcr.report(Y,os.path.join(CRUClimPath,'x%s%04d.%03d' %\
 (Param,6190,MonthOrd)))
-creating output directory
Param= 'etp'
PathOut= os.path.join(CRUTSSPath,Param)
FileNameIn= os.path.join(CRUArchivePath,'cru_%s.zip' % (Param))
try:
 os.mkdir(CRUTSSPath)
 os.mkdir(PathOut)
except:
 pass
YearCnt= 0
for YearOrd in range(StartYear,EndYear+1):
 YearCnt+=1
 print '\t\t%s%04d' %('processing year ',YearOrd)
 command= 'pcrcalc -d temp.map -f penmon_cru.txt %04d' % YearOrd
 os.system(command)
 for MonthOrd in range(1,13):
 FileNameIn= os.path.join(PathOut,'%s%04d.%03d' %
('epot',YearOrd,MonthOrd))
 FileNameOut= os.path.join(PathOut,'%s%04d.%03d' %
('cetp',YearOrd,MonthOrd))
 shutil.move(FileNameIn,FileNameOut)
print '\t\t%s' % 'all monthly evapotranspiration fields calculated'
 5) deriving climatology for evaptranspiration
print '\t%s' % 'calculating climatology over 1961-1990 for:'
ParamCnt= 0
Mask= [pcr.ordinal(0)]*len(CRUTSSParamList)
for Param in ['etp']:
 -setting path
 PathOut= os.path.join(CRUTSSPath,Param)
 -echoing parameter to screen
 print '\t\t%s' % Param
 -initializing bins
 SX= [pcr.scalar(0)]*NMonths
 SSQ= [pcr.scalar(0)]*NMonths
 N= [pcr.scalar(0)]*NMonths
 for YearOrd in range(StartYear,EndYear+1):
 for MonthOrd in range(1,NMonths+1):
 ID= pcr.ordinal(YearOrd*100+MonthOrd)
 X= pcr.readmap(os.path.join(PathOut,'c%s%04d.%03d' %\
 (Param,YearOrd,MonthOrd)))
 XValid=
pcr.ifthenelse((X+2730)>=0,pcr.boolean(1),pcr.boolean(0))
 XValid= pcr.cover(XValid,pcr.boolean(0))
 if YearOrd == StartYear and MonthOrd == 1:
 Mask[ParamCnt]= pcr.ifthenelse(XValid,ID,Mask[ParamCnt])
 else:

34 of 46

 Mask[ParamCnt]=
pcr.ifthenelse(pcr.pcrand(pcr.pcrnot(XValid),\
 (Mask[ParamCnt] > 0)),ID,Mask[ParamCnt])
 if YearOrd >= ClimStart and YearOrd <= ClimEnd:
 adding data
 SX[MonthOrd-1]= SX[MonthOrd-1]+X
 SSQ[MonthOrd-1]= SSQ[MonthOrd-1]+X**2
 N[MonthOrd-1]= N[MonthOrd-
1]+pcr.ifthenelse(XValid,pcr.scalar(1),0)
 for MonthOrd in range(1,NMonths+1):
 -calculating mean and standard deviation
 AVG= pcr.ifthen(N[MonthOrd-1]>=1,SX[MonthOrd-1]/N[MonthOrd-1])
 SD= pcr.ifthen(N[MonthOrd-1]>=1,\
 1/N[MonthOrd-1]*(N[MonthOrd-1]*SSQ[MonthOrd-1]-SX[MonthOrd-
1]**2)**0.5)
 pcr.report(AVG,os.path.join(CRUClimPath,'clm%sav.%03d' %
(Param,MonthOrd)))
 pcr.report(SD,os.path.join(CRUClimPath,'clm%ssd.%03d' %
(Param,MonthOrd)))
 -reporting mask and updating ParamCnt
 pcr.report(Mask[ParamCnt],os.path.join(CRUClimPath,'cru_ext%s.map' % Param))
 ParamCnt+= 1
-total over climatology
EpotAnnual= pcr.scalar(0)
for MonthOrd in range(1,NMonths+1):
 EpotAnnual= EpotAnnual+pcr.readmap(os.path.join(CRUClimPath,'clm%sav.%03d' %
('etp',MonthOrd)))
pcr.report(pcr.scalar(365/12)*EpotAnnual,os.path.join(CRUClimPath,'clm%stot.map' %
'etp'))
#6) creating growing season
print '\t%s' % 'obtaining growing season and growth function'
#-create directory if not exisiting already
try:
 os.mkdir(CRUGrowthPath)
except:
 pass
#-processing temperature, precipitation and evaporation for growth season of
natural vegetation
#-crop factor variables
CropVegMax= 1.20
CropVegMin= 0.20
CropVegStep= 0.01
CropVeg= pcr.scalar(CropVegMax)
CropStack= [pcr.boolean(0.0)]*12
#-temperature limit curtailing growing season
tmpLimit= pcr.scalar(5.0)
#-meteo Stacks
tmpStack= [pcr.scalar(0.0)]*12
preStack= [pcr.scalar(0.0)]*12
preMax= pcr.scalar(0.0)
#-moisture values and stacks
moiststorMax= pcr.scalar(300.0)
moistgrowthLim= pcr.scalar(125.0)
moiststorHi= pcr.scalar(0.0)
moiststorLo= pcr.scalar(0.0)
moiststorStack= [pcr.scalar(0.0)]*12
moistdefStack= [pcr.scalar(0.0)]*12
#-stacks for functions specifying growth
fTStack= [pcr.scalar(0.0)]*12
fSStack= [pcr.scalar(0.0)]*12
fGStack= [pcr.scalar(0.0)]*12
#-patch for relative LAI, estimated crop factor and meteo factor
jointClone= pcr.pcror(CloneMap,cruClone)
#-points of nodes on growth curve and stack for months:
0) no particulars, 1) start of growth, 2) start of mid-season,
3) end of mid-season, 4) end of senescence
and timing thereof
nodeStack= [pcr.scalar(0.0)]*12

35 of 46

stepStack= [pcr.scalar(0.0)]*12
devStack= [pcr.scalar(0.0)]*12
relLAIStack= [pcr.scalar(0.0)]*12
emergenceLim= pcr.scalar(0.10)
matureLim= pcr.scalar(0.80)
senescenceLim= pcr.scalar(0.60)
fGMaxOcc= pcr.scalar(-1)
emergenceStart= pcr.scalar(-1)
matureStart= pcr.scalar(-1)
senescenceStart= pcr.scalar(-1)
dormancyStart= pcr.scalar(-1)
#-obtaining BATS temperature function and
determining start, end and length of growing season
#-reading in stacks of temperature and precipitation
tmpMin= tmpLimit
tmpMax= pcr.scalar(-1.0e2)
growthStart= pcr.scalar(-1)
growthEnd= pcr.scalar(-1)
growthLength= pcr.scalar(0)
growthMultiple= pcr.boolean(0)
for MonthOrd in range(1,13):
 tmpX=
pcr.scalar(CRUTSSConvList[0])*pcr.readmap(os.path.join(CRUClimPath,'clm%sav.%03d' %
\
 ('tmp',MonthOrd)))
 tmpStack[MonthOrd-1]= tmpX
 tmpMax= pcr.ifthenelse(tmpX>=tmpLimit,pcr.max(tmpX,tmpMax),tmpMax)
 preX= pcr.scalar(CRUTSSConvList[1])*pcr.readmap(os.path.join(CRUClimPath,\
 'clm%sav.%03d' % ('pre',MonthOrd)))
 preStack[MonthOrd-1]= preX
 preMax= pcr.max(preX,preMax)
#-looping through years to process growing season temporal characteristics
and obtaining BATS function
for MonthOrd in range(0,12):
 fTStack[MonthOrd]= pcr.ifthenelse(tmpStack[MonthOrd]>tmpLimit,\
 pcr.scalar(1.0)-pcr.min(1,(tmpMax-tmpStack[MonthOrd])/\
 (tmpMax-tmpMin))**2,0)
 growthLength=
growthLength+pcr.ifthenelse(tmpStack[MonthOrd]>=tmpLimit,pcr.scalar(1),\
 pcr.scalar(0))
 growthMultiple=
pcr.ifthenelse(pcr.pcrand(pcr.pcrand(tmpStack[MonthOrd]>=tmpLimit,\
 tmpStack[MonthOrd-1]<tmpLimit),growthStart>0),\
 pcr.boolean(1),growthMultiple)
 growthStart= pcr.ifthenelse(pcr.pcrand(tmpStack[MonthOrd]>=tmpLimit,\
 tmpStack[MonthOrd-1]<tmpLimit),pcr.scalar(MonthOrd+1),growthStart)
 growthEnd= pcr.ifthenelse(pcr.pcrand(tmpStack[MonthOrd]<tmpLimit,\
 tmpStack[MonthOrd-1]>=tmpLimit),pcr.scalar(MonthOrd+1),growthEnd)
#-water balance
#looped through CropVegList, updated if moistStorHi is zero
CropCntMax= int(CropVegMax/CropVegStep+0.5)
CropCntMin= int(CropVegMin/CropVegStep-0.5)
for CropCnt in range(CropCntMax,CropCntMin,-1):
 CropVegValue= CropVegMin+(CropCnt-(CropCntMin+1))*CropVegStep
 print '\t\t%s%4.2f' % ('crop factor: ',CropVegValue)
 CropVeg= pcr.ifthenelse(pcr.pcrand(moiststorHi>moistgrowthLim,\
 moiststorLo>pcr.scalar(-1.0)*moistgrowthLim),\
 CropVeg,pcr.scalar(CropVegValue))
 CropBare= min(CropVeg,pcr.scalar(0.2))
 #-obtaining crop factor
 for MonthOrd in range(0,12):
 CropStack[MonthOrd]= CropBare+0.5*(fTStack[MonthOrd-1]+\
 fTStack[MonthOrd])*(CropVeg-CropBare)
 #-resetting moiststorLo to maximum available storage
 moiststorLo= moiststorMax
 #-stepping through five years to get dynamic equilibrium for water balance,
 # moisture storage in mm and cumulative moistre deficit and
 for YearOrd in range(0,5):

36 of 46

 for MonthOrd in range(1,13):
 preX= preStack[MonthOrd-1]
 etpX= CropStack[MonthOrd-1]*pcr.scalar(\
 1000*(JulianDay[MonthOrd]-JulianDay[MonthOrd-1]))*\
 pcr.readmap(os.path.join(CRUClimPath,'clm%sav.%03d' %\
 ('etp',MonthOrd)))
 moiststorStack[MonthOrd-1]=
pcr.min(moiststorMax,moiststorStack[MonthOrd-2]+preX-etpX)
 moistdefStack[MonthOrd-1]=
pcr.ifthenelse(moiststorStack[MonthOrd-1]<0,\
 moistdefStack[MonthOrd-2]+moiststorStack[MonthOrd-1],0)
 moiststorStack[MonthOrd-1]= pcr.max(0,moiststorStack[MonthOrd-
1])
 moiststorHi= pcr.max(moiststorStack[MonthOrd-1],moiststorHi)
 moiststorLo= pcr.min(moistdefStack[MonthOrd-1],moiststorLo)
#-boolean map of areas without any positive storage to
patch f(S) for these areas on the basis of 2-month average precipitation
desert= pcr.ifthenelse(moiststorHi>0.0,pcr.boolean(0),pcr.boolean(1))
#for MonthOrd in range(0,12):
#-obtaining reduction function due to water stress for areas with emphemeral water
shortage
and growth function per month and peak growth
fGMax= pcr.scalar(-9.9)
for MonthOrd in range(0,12):
 weightFactor= 0
 for icnt in range(0,1):
 weightFactor+= 1
 Month= MonthOrd+icnt
 if Month>11:
 Month= Month-12
 fSStack[MonthOrd]= fSStack[MonthOrd]+preStack[Month]
 fSStack[MonthOrd]= 1.0/weightFactor*fSStack[MonthOrd]/preMax
 fSStack[MonthOrd]= pcr.ifthenelse(desert,fSStack[MonthOrd],\
 pcr.max(0,1+moistdefStack[MonthOrd]/moiststorHi))
 fGStack[MonthOrd]= fTStack[MonthOrd]*fSStack[MonthOrd]
 fGMax= pcr.max(fGMax,fGStack[MonthOrd])
#-patch for points that have temperature above threshold but have no growth
(no moisture during growingseason) and scaling values between 0 and 1
laiPatch= pcr.ifthenelse(cruClone,pcr.pcrand(fGMax>emergenceLim,\
 tmpMax>tmpLimit),pcr.pcrnot(CloneMap))
CRUPatchSel= pcr.nominal(pcr.pcrand(cruClone,laiPatch))
CRUPatchID= pcr.spreadzone(CRUPatchSel,pcr.scalar(0),pcr.scalar(1))
fGMax= pcr.scalar(-9.9)
fGMin= pcr.scalar(9.9)
for MonthOrd in range(0,12):
 fGStack[MonthOrd]= pcr.ifthen(laiPatch,fGStack[MonthOrd])
 fGStack[MonthOrd]= pcr.ifthen(jointClone,pcr.cover(fGStack[MonthOrd],\
 pcr.areaaverage(fGStack[MonthOrd],CRUPatchID)))
 fGMin= pcr.min(fGMin,fGStack[MonthOrd])
 fGMax= pcr.max(fGMax,fGStack[MonthOrd])
for MonthOrd in range(0,12):
 fGMaxOcc= pcr.ifthenelse(fGStack[MonthOrd]==fGMax,pcr.scalar(MonthOrd+1),\
 fGMaxOcc)
 fGStack[MonthOrd]= (fGStack[MonthOrd]-fGMin)/(fGMax-fGMin)
 fGStack[MonthOrd]=
pcr.cover(pcr.ifthenelse(tmpMax>tmpLimit,fGStack[MonthOrd],0),\
 fGStack[MonthOrd])
 fGStack[MonthOrd]= pcr.min(matureLim,pcr.max(emergenceLim,fGStack[MonthOrd]))
#patching crop factor
CropVeg= pcr.ifthen(jointClone,pcr.cover(CropVeg,\
 pcr.areaaverage(CropVeg,CRUPatchID)))
#-determining nodes of growth functions
for MonthOrd in range(0,12):
 MonthPrev= MonthOrd-1
 MonthSucc= MonthOrd+1
 if MonthSucc>11:
 MonthSucc= MonthSucc-12
 #-emergence

37 of 46

 nodeStack[MonthOrd]=
pcr.ifthenelse(pcr.pcrand(fGStack[MonthOrd]<=emergenceLim,\
 fGStack[MonthSucc]>emergenceLim),pcr.scalar(1),nodeStack[MonthOrd])
 #-start mid-season
 nodeStack[MonthOrd]= pcr.ifthenelse(pcr.pcrand(fGStack[MonthOrd]>=
 matureLim,\
 fGStack[MonthPrev]<matureLim),pcr.scalar(2),nodeStack[MonthOrd])
 #-end mid-season
 nodeStack[MonthOrd]= pcr.ifthenelse(pcr.pcrand(fGStack[MonthOrd]>=matureLim,\
 fGStack[MonthSucc]<matureLim),pcr.scalar(3),nodeStack[MonthOrd])
 #-senescence
 nodeStack[MonthOrd]=
pcr.ifthenelse(pcr.pcrand(fGStack[MonthOrd]>=senescenceLim,\
 fGStack[MonthSucc]<senescenceLim),pcr.scalar(4),nodeStack[MonthOrd])
#-selecting nodes of interest from node types
emergenceDuration= pcr.scalar(13)
matureDuration= pcr.scalar(13)
senescenceDuration= pcr.scalar(13)
dormancyDuration= pcr.scalar(13)
for MonthOrd in range(0,12):
 #-map of current month
 MonthMap= pcr.scalar(MonthOrd+1)
 #duration from month to peak of growth
 Duration= fGMaxOcc-
MonthMap+pcr.ifthenelse(MonthMap>fGMaxOcc,pcr.scalar(12),0)
 # 1) emergence
 emergenceCond=
pcr.ifthenelse(nodeStack[MonthOrd]==1,pcr.boolean(1),pcr.boolean(0))
 emergenceStart= pcr.ifthenelse(pcr.pcrand(Duration<emergenceDuration,\
 emergenceCond),MonthMap,emergenceStart)
 emergenceDuration= pcr.ifthenelse(emergenceCond,\
 pcr.min(Duration,emergenceDuration),emergenceDuration)
for MonthOrd in range(0,12):
 #-map of current month
 MonthMap= pcr.scalar(MonthOrd+1)
 #duration from month to peak of growth
 Duration= fGMaxOcc-
MonthMap+pcr.ifthenelse(MonthMap>fGMaxOcc,pcr.scalar(12),0)
 # 2) start of maturity
 matureCond=
pcr.ifthenelse(pcr.pcrand(nodeStack[MonthOrd]==2,emergenceDuration>Duration),\
 pcr.boolean(1),pcr.boolean(0))
 matureStart= pcr.ifthenelse(pcr.pcrand(Duration<matureDuration,\
 matureCond),MonthMap,matureStart)
 matureDuration= pcr.ifthenelse(matureCond,\
 pcr.min(Duration,matureDuration),matureDuration)
for MonthOrd in range(0,12):
 #-map of current month
 MonthMap= pcr.scalar(MonthOrd+1)
 #duration from peak of growth to month
 Duration= MonthMap-
fGMaxOcc+pcr.ifthenelse(MonthMap<fGMaxOcc,pcr.scalar(12),0)
 # 3) start of senescence
 senescenceCond= pcr.ifthenelse(pcr.pcror(nodeStack[MonthOrd]==3,\
 pcr.pcrand(fGStack[MonthOrd]==matureLim,nodeStack[MonthOrd]==4)),\
 pcr.boolean(1),pcr.boolean(0))
 senescenceStart= pcr.ifthenelse(pcr.pcrand(Duration<senescenceDuration,\
 senescenceCond),MonthMap,senescenceStart)
 senescenceDuration= pcr.ifthenelse(senescenceCond,\
 pcr.min(Duration,senescenceDuration),senescenceDuration)
 # 4) start of dormancy, reset if regrowth occurs and value is closer
 #to senescence than to emergence
 dormancyReset= pcr.ifthenelse(pcr.pcrand(dormancyDuration<13,\
 pcr.pcror(nodeStack[MonthOrd]==2,nodeStack[MonthOrd]==3)),
 pcr.boolean(1),pcr.boolean(0))
 dormancyReset= pcr.ifthenelse(Duration<MonthMap-emergenceStart+\
 pcr.ifthenelse(MonthMap<emergenceStart,pcr.scalar(12),0),\
 dormancyReset,pcr.boolean(0))

38 of 46

 dormancyDuration=
pcr.ifthenelse(dormancyReset,pcr.scalar(13),dormancyDuration)
 dormancyCond=
pcr.ifthenelse(nodeStack[MonthOrd]==4,pcr.boolean(1),pcr.boolean(0))
 dormancyStart= pcr.ifthenelse(pcr.pcrand(Duration<dormancyDuration,\
 dormancyCond),MonthMap,dormancyStart)
 dormancyDuration= pcr.ifthenelse(dormancyCond,\
 pcr.min(Duration,dormancyDuration),dormancyDuration)
#-patching start of growth season for desert regions
matureStart= pcr.ifthenelse(matureStart<0,senescenceStart,matureStart)
#-obtaining step function and deviations thereof
1) emergence and full growth
#-timers and slope
MonthMaturity= matureStart-emergenceStart+\
 pcr.ifthenelse(matureStart<emergenceStart,pcr.scalar(12),0)
MonthSenescence= senescenceStart-emergenceStart+\
 pcr.ifthenelse(senescenceStart<emergenceStart,pcr.scalar(12),0)
growthSlope= (matureLim-emergenceLim)/MonthMaturity
#-interpolation between emergence and full growth conditions
for MonthOrd in range(0,12):
 MonthMap= pcr.scalar(MonthOrd+1)
 MonthMap= MonthMap-
emergenceStart+pcr.ifthenelse(MonthMap<emergenceStart,pcr.scalar(12),0)
 stepStack[MonthOrd]= pcr.ifthenelse(MonthMap<MonthMaturity,\
 MonthMap*growthSlope,0)+emergenceLim
 stepStack[MonthOrd]= pcr.ifthenelse(pcr.pcrand(MonthMap>=MonthMaturity,\
 MonthMap<=MonthSenescence),matureLim,stepStack[MonthOrd])
2) senescence and dormancy after full growth
#-timers and slope
MonthSenescence= dormancyStart-senescenceStart+\
 pcr.ifthenelse(dormancyStart<senescenceStart,pcr.scalar(12),0)
MonthEmergence= emergenceStart-senescenceStart+\
 pcr.ifthenelse(emergenceStart<senescenceStart,pcr.scalar(12),0)
senescenceSlope= pcr.scalar(0)
dormancySlope= pcr.scalar(0)
for MonthOrd in range(0,12):
 MonthPrev= MonthOrd-1
 MonthSucc= MonthOrd+1
 if MonthSucc>11:
 MonthSucc= MonthSucc-12
 dormancyCond= pcr.ifthenelse(pcr.scalar(MonthOrd+1)==dormancyStart,\
 pcr.boolean(1),pcr.boolean(0))
 senescenceSlope= pcr.ifthenelse(dormancyCond,\
 pcr.ifthenelse(MonthSenescence>0,\
 (fGStack[MonthOrd]-matureLim)/MonthSenescence,pcr.scalar(-
1)),senescenceSlope)
 dormancySlope= pcr.ifthenelse(dormancyCond,\
 pcr.min(fGStack[MonthOrd]-fGStack[MonthPrev],\
 fGStack[MonthSucc]-fGStack[MonthOrd]),dormancySlope)
 senescenceLim= pcr.ifthenelse(dormancyCond,fGStack[MonthOrd],senescenceLim)
#-interpolation between end of full growth and start of senescence
for MonthOrd in range(0,12):
 MonthMap= pcr.scalar(MonthOrd+1)
 MonthMap= MonthMap-
senescenceStart+pcr.ifthenelse(MonthMap<senescenceStart,pcr.scalar(12),0)
 stepStack[MonthOrd]= pcr.ifthenelse(MonthMap<MonthSenescence,\
 matureLim+MonthMap*senescenceSlope,stepStack[MonthOrd])
 stepStack[MonthOrd]= pcr.ifthenelse(pcr.pcrand(MonthMap>=MonthSenescence,\
 MonthMap<MonthEmergence),pcr.max(emergenceLim,senescenceLim+\
 (MonthMap-MonthSenescence)*dormancySlope),stepStack[MonthOrd])
#-scaling growth functions between 0 and 1 and obtaining deviations
to scale relative LAI
for MonthOrd in range(0,12):
 fGStack[MonthOrd]= (fGStack[MonthOrd]-emergenceLim)/(matureLim-emergenceLim)
 stepStack[MonthOrd]= (stepStack[MonthOrd]-emergenceLim)/(matureLim-
emergenceLim)
 devStack[MonthOrd]= pcr.scalar(1.0)-0.5*((CropVeg-CropVegMin)/(CropVegMax-
CropVegMin)+\

39 of 46

 fGStack[MonthOrd]-stepStack[MonthOrd])
 devStack[MonthOrd]= pcr.ifthenelse(stepStack[MonthOrd]>0,\
 stepStack[MonthOrd]**devStack[MonthOrd],stepStack[MonthOrd])
#-check for any erroneous spikes
for MonthOrd in range(0,12):
 MonthPrev= MonthOrd-1
 MonthSucc= MonthOrd+1
 if MonthSucc>11:
 MonthSucc= MonthSucc-12
 slopePrev= devStack[MonthPrev]-devStack[MonthOrd]
 slopeSucc= devStack[MonthOrd]-devStack[MonthSucc]
 slopePrev= pcr.ifthenelse(slopePrev==0,pcr.scalar(0),\
 slopePrev/pcr.abs(slopePrev))
 slopeSucc= pcr.ifthenelse(slopeSucc==0,pcr.scalar(0),\
 slopeSucc/pcr.abs(slopeSucc))
 changeCond= pcr.ifthenelse(pcr.pcror(slopePrev==0,slopeSucc==0),\
 pcr.boolean(0),pcr.ifthenelse(slopePrev==slopeSucc,pcr.boolean(0),\
 pcr.boolean(1)))
 changeCond= pcr.ifthenelse(pcr.pcrand(devStack[MonthOrd]>emergenceLim,\
 devStack[MonthOrd]<matureLim),changeCond,pcr.boolean(0))
 relLAIStack[MonthOrd]= pcr.ifthenelse(changeCond,\
 0.5*(devStack[MonthPrev]+devStack[MonthSucc]),\
 devStack[MonthOrd])
#-calculating growth length characteristics and check on generated output
fullGrowthSeason= pcr.scalar(0)
optGrowthSeason= pcr.scalar(0)
laiRelCover= pcr.boolean(1)
for MonthOrd in range(0,12):
 optGrowthSeason= optGrowthSeason+\
 pcr.ifthenelse(relLAIStack[MonthOrd]==1,pcr.scalar(1),pcr.scalar(0))
 fullGrowthSeason= fullGrowthSeason+\
 pcr.ifthenelse(relLAIStack[MonthOrd]>0,pcr.scalar(1),pcr.scalar(0))
 laiRelCover= pcr.ifthenelse(cruClone,\
 pcr.ifthenelse(pcr.cover(relLAIStack[MonthOrd],-1)>=
0,laiRelCover,pcr.boolean(0)),\
 pcr.boolean(1))
growthSeasonAnomaly=
pcr.ifthen(cruClone,pcr.ifthenelse(optGrowthSeason>fullGrowthSeason,\
 pcr.boolean(1),0))
laiMinAnomaly= pcr.boolean(0)
laiMaxAnomaly= pcr.boolean(0)
for MonthOrd in range(0,12):
 MonthMap= pcr.scalar(MonthOrd+1)
 laiMinAnomaly= pcr.ifthenelse(MonthMap==
emergenceStart,pcr.ifthenelse(relLAIStack[MonthOrd]<>\
 0.0,pcr.boolean(1),pcr.boolean(0)),laiMinAnomaly)
 laiMaxAnomaly= pcr.ifthenelse(MonthMap==
fGMaxOcc,pcr.ifthenelse(relLAIStack[MonthOrd]<> 1.0,\
 pcr.boolean(1),pcr.boolean(0)),laiMaxAnomaly)
laiMinAnomaly= pcr.cover(laiMinAnomaly,0)
laiMaxAnomaly= pcr.cover(laiMaxAnomaly,0)
#-calculation of meteorological factor for crop factor
for month at which growth function is at its maximum
MetFactor= pcr.scalar(0.0)
for MonthOrd in range(1,13):
 wndX= pcr.scalar(0.75)*pcr.scalar(1.0)*\
 pcr.readmap(os.path.join(CRUClimPath,'x%s%04d.%03d' %
('wnd',6190,MonthOrd)))
 tmpX= pcr.scalar(0.1)*\
 pcr.readmap(os.path.join(CRUClimPath,'clm%sav.%03d' % ('tmp',MonthOrd)))
 deltaTmp= pcr.scalar(0.1)*\
 pcr.readmap(os.path.join(CRUClimPath,'clm%sav.%03d' % ('dtr',MonthOrd)))
 maxTmp= tmpX+0.5*deltaTmp
 minTmp= tmpX-0.5*deltaTmp-\
 pcr.ifthenelse(moistdefStack >=0,pcr.scalar(0.0),pcr.scalar(2.0))
 RHMin=
pcr.scalar(100.0)*pcr.scalar(611.0)*pcr.exp(17.27*minTmp/(minTmp+237.3))/\
 (pcr.scalar(611.0)*pcr.exp(17.27*maxTmp/(maxTmp+237.3)))

40 of 46

 RHMin= pcr.min(80.0,pcr.max(RHMin,20))
 wndX= pcr.max(1.0,pcr.min(wndX,6.0));
 MetFactor= pcr.ifthenelse(fGMaxOcc==pcr.scalar(MonthOrd),\
 pcr.scalar(0.04)*(wndX-pcr.scalar(2.0))-\
 pcr.scalar(0.004)*(RHMin-45),MetFactor)
#-patching meteo factor
MetFactor=
pcr.ifthenelse(jointClone,pcr.cover(MetFactor,pcr.areaaverage(MetFactor,CRUPatchID)
),0)
#-reporting maps of interest and exporting ASCII maps
pcr.report(growthLength,os.path.join(CRUGrowthPath,'growthlength.map'))
pcr.report(growthStart,os.path.join(CRUGrowthPath,'growthstart.map'))
pcr.report(growthEnd,os.path.join(CRUGrowthPath,'growthend.map'))
pcr.report(growthMultiple,os.path.join(CRUGrowthPath,'growthmultiple.map'))
pcr.report(moiststorHi,os.path.join(CRUGrowthPath,'moistmax.map'))
pcr.report(moiststorLo,os.path.join(CRUGrowthPath,'moistmin.map'))
pcr.report(tmpMin,os.path.join(CRUClimPath,'clmtmpmin.map'))
pcr.report(tmpMax,os.path.join(CRUClimPath,'clmtmpmax.map'))
pcr.report(growthSeasonAnomaly,os.path.join(CRUGrowthPath,'growthanomaly.map'))
pcr.report(laiMinAnomaly,os.path.join(CRUGrowthPath,'laimin_ano.map'))
pcr.report(laiMaxAnomaly,os.path.join(CRUGrowthPath,'laimax_ano.map'))
pcr.report(laiRelCover,os.path.join(CRUGrowthPath,'lai_mv.map'))
pcr.report(laiPatch,os.path.join(CRUGrowthPath,'laipatch.map'))
pcr.report(CropVeg,os.path.join(CRUGrowthPath,'cropveg.map'))
pcr.report(fGMaxOcc,os.path.join(CRUGrowthPath,'fg_max.map'))
pcr.report(emergenceStart,os.path.join(CRUGrowthPath,'emergence.map'))
pcr.report(matureStart,os.path.join(CRUGrowthPath,'maturity.map'))
pcr.report(senescenceStart,os.path.join(CRUGrowthPath,'senescence.map'))
pcr.report(dormancyStart,os.path.join(CRUGrowthPath,'dormancy.map'))
pcr.report(MetFactor,os.path.join(CRUGrowthPath,'metfactor.map'))
pcr.report(fullGrowthSeason,os.path.join(CRUGrowthPath,'fullseason.map'))
pcr.report(optGrowthSeason,os.path.join(CRUGrowthPath,'optseason.map'))
for MonthOrd in range(1,13):
 mapName= generateNameT(os.path.join(CRUGrowthPath,'tfunc'),MonthOrd)
 pcr.report(fTStack[MonthOrd-1],mapName)
 mapName= generateNameT(os.path.join(CRUGrowthPath,'sfunc'),MonthOrd)
 pcr.report(fSStack[MonthOrd-1],mapName)
 mapName= generateNameT(os.path.join(CRUGrowthPath,'gfunc'),MonthOrd)
 pcr.report(fGStack[MonthOrd-1],mapName)
 mapName= generateNameT(os.path.join(CRUGrowthPath,'moist'),MonthOrd)
 pcr.report(moiststorStack[MonthOrd-1],mapName)
 mapName= generateNameT(os.path.join(CRUGrowthPath,'moistdef'),MonthOrd)
 pcr.report(moistdefStack[MonthOrd-1],mapName)
 mapName= generateNameT(os.path.join(CRUGrowthPath,'node'),MonthOrd)
 pcr.report(nodeStack[MonthOrd-1],mapName)
 mapName= generateNameT(os.path.join(CRUGrowthPath,'step'),MonthOrd)
 pcr.report(stepStack[MonthOrd-1],mapName)
 mapName= generateNameT(os.path.join(CRUGrowthPath,'dev'),MonthOrd)
 pcr.report(devStack[MonthOrd-1],mapName)
 mapName= generateNameT(os.path.join(CRUGrowthPath,'lairel'),MonthOrd)
 pcr.report(relLAIStack[MonthOrd-1],mapName)
#-growth season calculated
print '\t\t%s' % 'distribution of growth season calculated'
#7) generating mean and sd of annual values for primary variables: P, T and E0
print '\t%s' % 'obtaining annual values and statistics'
#-create directory if not exisiting already
try:
 os.mkdir(CRUPeriod)
except:
 pass
#update parameter list
CRUTSSParamList[2]= 'etp'
CRUTSSConvList[2]= 1000
icnt= 0
for Param in CRUTSSParamList[0:3]:
 PathOut= os.path.join(CRUTSSPath,Param)
 convMap= pcr.scalar(CRUTSSConvList[icnt])
 icnt+=1

41 of 46

 YearCnt= 0
 for YearOrd in range(1901,2003):
 YearCnt+=1
 XAnnual= pcr.scalar(0)
 TotDays= pcr.scalar(0)
 for MonthOrd in range(1,13):
 NrDays= pcr.scalar(JulianDay[MonthOrd]-JulianDay[MonthOrd-1])
 if (calendar.isleap(YearOrd))and(MonthOrd == 2):
 NrDays= NrDays+1
 TotDays= TotDays+NrDays
 X= convMap*pcr.readmap(os.path.join(PathOut,'c%s%04d.%03d' %\
 (Param,YearOrd,MonthOrd)))
 if (Param =='tmp')or(Param=='etp'):
 X= NrDays*X
 XAnnual= XAnnual+X
 if Param =='tmp':
 XAnnual= XAnnual/TotDays
 pcr.report(XAnnual,generateNameT(os.path.join(PathOut,'c%syear' %\
 Param),YearCnt))
 #-calculating statistics
 command= 'pcrcalc -f cru_stat.txt %s c%syear' % (Param,Param)
 os.system(command)
 for Period in ['','1','2','3']:
 for Stat in ['avg','sd','t']:
 FileNameIn= os.path.join(CRUPeriodPath,'%s%s.map' %
(Stat,Period))
 FileNameOut= os.path.join(CRUPeriodPath,'%s%s%s.map'
%(Param,Stat,Period))
 try:
 shutil.move(FileNameIn,FileNameOut)
 except:
 pass
 FileNameIn= os.path.join(CRUPeriodPath,'%s.tss' % ('avg'))
 FileNameOut= os.path.join(CRUPeriodPath,'%s.tss' %(Param))
 shutil.move(FileNameIn,FileNameOut)
#-all annual statistics calculated
print '\t\t%s' % 'annual statistics calculated'

42 of 46

Appendix 3: PCRaster script penmon_cru.txt
#estimating potential ETP with the Penman Equation
#for the CRU05 data set of average daily values per month
#on the basis of the CRU TS2.1 timeseries fields
#complemented by the CRU CL 1.0 at 0.5ï¿½ resolution
#includes updated calculation of short and longwave radiation on the basis of the
FAO (Allen et al.,1998)

binding
 ### INPUT ###
 # global data
 Mask = maps\cru_clone.map; # clone map
 SamplePoints= maps\globalsample.map; # sample locations
 DEM= maps\globaldem.map; # dem

 # table with fraction of relative sunshine hours given cloud cover
 SUNFRACTBL= maps\sunhoursfrac.tbl;

 # meteo from CRU05 dataset
 # - time series
 CLDStack= newlygridded\cld\ccld$1; # Cloud cover in fraction and
conversion factor
 CLDConv= scalar(0.001);
 TMPStack= newlygridded\tmp\ctmp$1; # Air temperature in ï¿½C and
conversion factor
 TMPConv= scalar(0.1);
 VAPStack= newlygridded\vap\cvap$1; # Vapour pressure in Pa and
conversion factor
 VAPConv= scalar(10);
 # - climatology over the period 1961-1990
 WNDStack= climatology\xwnd6190; # Windspeed in m/s and conversion factor,
patched to CRU TSS extent
 WNDConv= scalar(1);
 # - monthly climatology of extraterrestrial radiation
 MAXRADStack= climatology\maxrad; # maximum extraterrestrial radiation in
W/m2 and conversion factor
 MAXRADConv= scalar(1);

 ### OUPUT ###
 RAD= newlygridded\etp\rad; #radiation terms: global radiation,
shortwave, longwave and net radiation
 RSW= newlygridded\etp\rsw;
 RLW= newlygridded\etp\rlw;
 Er= newlygridded\etp\rnet;
 EPOT= newlygridded\etp\epot$1; # reference evapotranspiration ET0
 EPOTTSS= newlygridded\etp\epot.tss; # reported timeseries with potential
evaporation (mm/day)
 EPOTANN= newlygridded\etp\epotannual.map; # total annual reference
evapotranspiration

 ### PENMAN CONSTANTS ###
 Sigma= 5.67E-8; # Stefan-Boltzmann constant for emission of
longwave radiaton
 Albedo= 0.23; # albedo for reference crop (grass)
 Rs= 70.0; # surface resistance for reference
crop (grass)
 Cp = 1004; # specific heat of air at constant P
(J/(kg*K))
 Epsilon = 0.622; # ratio moleculair weight of water vapour
and dry air
 K = 0.41; # Karman constant
 Roa = 1.2047; # air density (kg/m^3)
 Windheight = 10.0; # height open area windspeed (m above
ground)
 TempHeight= 2.0; # height open area temperature measurements
(m above ground)
 Vegheight = 0.12; # height of the vegetation (m above ground)

43 of 46

 ### FAO CONSTANTS ###
 RADCON= scalar(0.25); #slope and constant to calculate incoming
shortwave radiation
 RADSLOPE= scalar(0.50); #on basis of sunshine fraction
 RADDIF= scalar(0.35); #basic reduction of relative incoming
radiation in correction of net longwave radiation
 EA0= scalar(0.34); #constant of correction of net longwave
radiation for vapour pressure
 EAFACTOR= scalar(4.43e-3); #corresponding factor

areamap
 Mask;

timer
 1 12 1;
 rep1= endtime;

initial
 ### Evapotranspiration ###

 # Constant for longwave radiation correction for cloudiness
 RADCOR= (1+RADDIF)/(RADCON+RADSLOPE);

 # Constant in the windspeed part of aerodynamic resistance
 # zero plane displacement, roughness height for momentum and heat and vapour
transfer
 Zd= 2/3*Vegheight;
 Z0m= 0.123*Vegheight;
 Z0h= 0.1*Z0m;
 RaTerm= ln((Windheight-Zd)/(Z0m))*ln((TempHeight-Zd)/(Z0h))/sqr(K);

 # pressure, not measured: set to 1013 hPa at sea level
 Press = 101300*((293-0.0065*cover(DEM,0))/293)**5.26;
 # annual evapotranspiration initialized
 EPOTANN= scalar(0);

dynamic

 ### PENMAN EVAPOTRANSPIRATION ###
 # reading in timeseries: TSS
 TMP= TMPConv*timeinput(TMPStack); # daily temperature (ï¿½C)
 CLD= CLDConv*timeinput(CLDStack); # cloud cover (-)
 Ea= VAPConv*timeinput(VAPStack); # actual vapour pressure (Pa)
 # reading in timeseries: climatology
 WND = WNDConv*timeinput(WNDStack); # windspeed (m/s)
 WND= max(0.1,WND);
 MAXRAD= MAXRADConv*timeinput(MAXRADStack); #maximum extraterrestrial
radiation (W/m2)

 ## Radiation term ##
 # - sunshine fraction and corresponding fraction shortwave radiation
 CLD1= roundoff(10*CLD+0.5);
 CLD0= CLD1-1;
 SUN0= lookupscalar(SUNFRACTBL,CLD0);
 DELTASUN= (lookupscalar(SUNFRACTBL,CLD1)-SUN0)/(CLD1-CLD0);
 SUNFRAC= SUN0+(10*CLD-CLD0)*DELTASUN;
 RADFRAC= RADCON+RADSLOPE*SUNFRAC;
 # - short, longwave and net radiation
 RAD= RADFRAC*MAXRAD;
 RSW= (1-Albedo)*RAD;
 RLW= Sigma*(TMP+273)**4*max(0,EA0-
EAFACTOR*sqrt(Ea))*(min(1+RADDIF,RADCOR*RADFRAC)-RADDIF);
 Er= max(0,RSW-RLW); # radiation (W/m2)

 ## Mass term ##
 #Temperature relationships

44 of 46

 Lv = 2.501E6-2370*TMP; # latent heat of vaporazation of
water (J/kg)
 T237 = TMP+237.3; # term for Goff-relationship
 Es = 611.0*exp(17.27*TMP/T237); # saturated and actual vap pressure (Pa)
 RH= Ea/Es; # not used

 ## wind term ##
 # canopy resistance (s/m)
 Ra = RaTerm/WND;

 ## weighing of radiation and mass transfer term ##
 Delta = (4098.0*Es)/(T237**2); # slope of sat vap pressure curve
(Pa/oC)
 Gamma = (Cp*Press)/(Epsilon*Lv); # psychrometric constant (Pa/oC)
 DGLv = (Delta+Gamma*(1+Rs/Ra))*Lv; # Pa/ï¿½C * J/kg

 # Aerodynamic evaporation rate (mm/s)
 Ea = Roa*Cp*(Es-Ea)/Ra;

 ## Potential evapotranspiration ##
 Prad = Delta*Er/DGLv;
 Pwind = Ea/DGLv;

 #ETP in mm/s => m/day
 report EPOT = max(0,0.001*(Prad+Pwind)*24*3600);
 report EPOTTSS= timeoutput(SamplePoints,EPOT);
 report (rep1) EPOTANN= EPOTANN+EPOT*365/12;

45 of 46

Appendix 4: Subdivision of the Olson classification into the surface vegetation types used in PCR-GLOBWB (short, tall) and additional crop categories
(natural vegetation, rain fed and irrigated crops). Only the ecosystem types occurring in the GLCC are shown. The values between brackets refer to the
LAI during the growing season, LAIg [m

2·m-2], its range, LAIg-LAI d, and the estimated vegetation height, h [m], respectively.
 Crop category
Surface type Natural vegetation Rain fed crops Irrigated crops
Short vegetation 2: Low Sparse Grassland (1.8, 1.6, 0.3)

7: Tall Grasses and Shrubs (2.2, 1.4, 1.0)
8: Bare Desert (0.0, 0.0, 0.1)
9: Upland Tundra (2.3, 1.9, 0.3)
11: Semi Desert (0.5, 0.5, 0.1)
12: Glacier Ice (0.0, 0.0, 0.1)
13: Wooded Wet Swamp (3.5, 0.5, 0.3)
40: Cool Grasses and Shrubs (1.9, 1.9, 0.6)
41: Hot and Mild Grasses and Shrubs (1.7, 1.2, 1.0)
42: Cold Grassland (1.5, 0.6, 0.3)
44: Mire, Bog, Fen (2.5, 2.4, 0.3)
45: Marsh Wetland (2.5, 2.4, 0.3)
50: Sand Desert (0.0, 0.0, 0.1)
51: Semi Desert Shrubs (0.8, 0.3, 0.1)
52: Semi Desert Sage (1.2, 1.2, 0.1)
53: Barren Tundra (1.9, 1.9, 0.3)
64: Heath Scrub (4.6, 4.5, 1.0)
69: Polar and Alpine Desert (0.0, 0.0, 0.1)

1: Urban (0.0, 0.0, 10.0)
30: Cool Crops and Towns (2.5, 0.7, 1.0)
31: Crops and Town (4.5, 3.4, 1.0)
35: Corn and Beans Cropland (2.5, 2.1, 1.0)
93: Grass Crops (2.0, 2.0, 0.7)
94: Crops, Grass, Shrubs (2.7, 1.9, 1.0)

10: Irrigated Grassland (4.5, 4.5, 0.3)
36: Rice Paddy and Field (4.6, 4.6, 0.6)
37: Hot Irrigated Cropland (4.4, 3.1, 0.5)
38: Cool Irrigated Cropland (3.0, 3.0, 0.5)
76: Crop and Water Mixtures (4.4, 4.2, 0.6)

Tall vegetation 3: Coniferous Forest (9.2, 0.2, 10.0)
4: Deciduous Conifer Forest (3.6, 3.5, 10.0)
5: Deciduous Broadleaf Forest (5.2, 5.1, 10.0)
6: Evergreen Broadleaf Forests (9.9, 0.4, 6.8)
16: Shrub Evergreen (6.0, 3.8, 5.5)
17: Shrub Deciduous (4.6, 4.2, 2.6)
19: Evergreen Forest and Fields (6.0, 3.0, 2.5)
20: Cool Rain Forest (9.3, 0.0, 10.0)
21: Conifer Boreal Forest (5.5, 0.0, 10.0)
22: Cool Conifer Forest (9.2, 4.8, 10.0)
23: Cool Mixed Forest (4.2, 4.1, 10.0)
24: Mixed Forest (7.0, 6.0, 6.8)
25: Cool Broadleaf Forest (5.2, 4.7, 10.0)
26: Deciduous Broadleaf Forest (5.2, 4.4, 10.0)
27: Conifer Forest (9.7, 5.3, 10.0)
28: Montane Tropical Forests (4.8, 0.8, 5.5)
29: Seasonal Tropical Forest (9.1, 6.4, 10.0)
32: Dry Tropical Woods (6.1, 3.6, 5.5)
33: Tropical Rainforest (9.3, 0.0, 10.0)
43: Savanna (Woods) (3.0, 2.1, 2.5)
46: Mediterranean Scrub (4.3, 1.8, 4.6)
47: Dry Woody Scrub (4.6, 3.8, 2.6)
48: Dry Evergreen Woods (1.8, 0.1, 0.4)

34: Tropical Degraded Forest (6.0, 1.6, 5.5)
92: Broadleaf Crops (5.0, 2.7, 1.8)
95: Evergreen Tree Crop (6.0, 3.0, 2.5)
96: Deciduous Tree Crop (5.1, 3.6, 5.9)

46 of 46

54: Cool Southern Hemisphere Mixed Forests (4.8, 4.7, 6.5)
55: Cool Fields and Woods (3.0, 2.1, 1.0)
56: Forest and Field (6.1, 3.9, 1.7)
57: Cool Forest and Field (4.0, 3.0, 1.7)
58: Fields and Woody Savanna (5.1, 3.0, 1.0)
59: Succulent and Thorn Scrub (4.7, 3.8, 0.3)
60: Small Leaf Mixed Woods (3.7, 3.6, 10.0)
61: Deciduous and Mixed Boreal Forest (4.7, 4.6, 6.5)
62: Narrow Conifers (3.4, 3.3, 3.1)
63: Wooded Tundra (3.1, 2.6, 0.5)
72: Mangrove (9.0, 0.0, 10.0)
78: Southern Hemisphere Mixed Forest (4.7, 4.6, 6.5)
79: Wet Sclerophylic Forest (4.8, 2.0, 6.5)
89: Moist Eucalyptus (4.8, 2.0, 6.5)
90: Rain Green Tropical Forest (9.3, 0.0, 10.0)
91: Woody Savanna (1.9, 0.8, 2.5)

