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Forcing PCR-GLOBWB with CRU data 
 
Rens van Beek, Utrecht University, 2008 
 
Introduction 
 
The Climate Research Unit the University of East Anglia provides global climate data that 
potentially are extremely valid as forcing for macro-scale hydrological models as PCR-
GLOBWB that requires precipitation, evapotranspiration and temperature. The advantage of 
the CRU products is that they are based on observations, covering the global land mass, and 
processed in a consistent manner. The period covered extends back over the past century, 
spanning the years 1901-2002 inclusive, for which sufficient meteorological data are 
available. As station density becomes low in certain regions of the world further back in time, 
a 30-year period was selected that was deemed to be little influenced by the alleged global 
warming at the end of the past century (1961-1990) which has since been adapted as the 
IPCC’s baseline climate. Two products cover these respective periods with a spatial 
resolution of 0.5° and a monthly resolution, the first being the CRU TS 2.1 for the time series 
from 1901 to 2002 inclusive, the second being the CRU CLIM 1.0 for the climatology over 
1961-1990. Both products contain primary variables -being the various temperature and 
precipitation products- that are directly obtained from station observations, which have a high 
density in space and time. Secondary variables with lower coverage are obtained by 
interpolation of the primary variables with the aid of empirical relationships. These secondary 
are particularly useful to calculate potential evapotranspiration that is required to force PCR-
GLOBWB in absence of direct estimates of the actual evapotranspiration. 
Some relevant fields, such as radiation and wind speed are only available for the climatology, 
which otherwise has been superseded by the time series itself and a new climatology product 
at a resolution of 10’ (New et al., 1998; New et al., 1999; New et al., 2002; Mitchell and 
Hulme, 2005). Complications in the use of the CRU dataset arise from a varying extent of the 
landmass for some of the secondary variables, from a discrepancy with the land mask used by 
the hydrological model as well as from the coarse temporal resolution which may lead to 
undesired results when coupled with non-linear processes such as interception that operate on 
such finer time scales. Therefore, this report describes the downscaling of the CRU dataset to 
daily values with the assistance of the ERA-40 reanalysis, its extrapolation to the desired land 
mask of PCR-GLOBWB and to develop the methodology to calculate potential 
evapotranspiration for the different land surfaces in PCR-GLOBWB. The objectives of this 
exercise were to: 
• Construct patches to extrapolate CRU data to a common land mask for all products and to 

extrapolate all relevant products to the land mask employed by PCR-GLOBWB; 
• Calculate the monthly reference potential evaporation from the CRU dataset for the length 

of the time series; 
• To develop a climatology of crop factors for the different land surfaces in PCR-GLOBWB 

that can be used to convert the monthly reference potential evapotranspiration into 
vegetation specific values; 

• Break-down monthly values of CRU precipitation and temperature and the calculated 
reference potential evapotranspiration to daily values, gridded at 0.5° using daily surface 
fields from the ERA-40 reanalysis to drive the model. 

 
In the next sections the methodology and resulting parameterizations will be discussed. This 
report does not investigate the quality issues related to the use of the CRU datasets for 
continental runoff. 
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Methodology 
 
Processing the CRU datasets 
 
The CRU datasets contain an ASCII file with the gridded integer surface fields for all months 
and a header with meta-information on the name, unit and conversion factor from integers to 
real values for each variable. The CRU TS 2.1 contains as primary variables the monthly 
precipitation total, the mean daily temperature and the diurnal temperature range per month. 
As secondary data, also the daily minimum and maximum temperature are provided. 
Additional secondary datasets comprise the fractional cloud cover, the vapour pressure and 
the number of wet and frost days. In addition to these data, the CRU CLIM 1.0 provides 
secondary data on wind speed and radiation. Otherwise, this dataset is obsolete. 
Each of the ASCII files with gridded fields was processed by means of a Fortran program 
(cru_grid2asc.exe , see Appendix 1) and stored as an individual ASCII grid with integer 
values (360 rows x 720 columns). This grid was converted to the PCRaster format by 
invoking the program asc2map from the python script mapgen_cru.py . This resulted in 
1224 monthly gridded surface fields over the period 1901-2002 for the time series and 12 
mean monthly maps for the climatology. 
Specific processing of these surface fields was carried out by means of the python script 
cru_proc.py (Appendix 2). First, the PCRaster maps were extracted from the respective 
zip archives and their mean and standard deviation computed for the baseline period 1961-
1990. This concerned the mean daily temperature, precipitation, cloud cover, vapour pressure, 
number of wet days and diurnal temperature range that were required for later processing.  
The CRU TS 2.1 dataset employs a common land mask for all its products. It misses wind 
speed, necessary to calculate the reference potential evapotranspiration but this is provided by 
the CLIM 1.0 dataset, albeit with a slightly different land mask. To extrapolate these data to 
the common land mask, a patch was constructed by determining the Holdridge life zone for 
each cell from the annual total precipitation and average temperature as approximation of the 
biotemperature. The potential evapotranspiration ratio (PET) was neglected as it originally is 
an empirical function of the biotemperature and does not add directly to the classification 
(Leemans, 1990). Temperature from the climatology over 1961-1990 was broken down 
logarithmically in the classes <1.5 °C, < 3 °C, < 6 °C, < 12 °C, < 16°C, < 24 °C and >= 24°C. 
Each of these classes was then broken down on the basis of precipitation, again 
logarithmically from <125 mm/year to more than 8000 mm/year, giving a total of 56 possible 
classes. For each of these classes, any cell of the CRU TS 2.1 product that was not covered by 
the CLIM 1.0 was assigned the ID of the nearest cell of the latter product belonging to the 
same Holdridge life zone. Thus, cell values could be extrapolated to the common land mask 
and used accordingly. 
 
 
Reference potential evapotranspiration and crop factors 
 
According to the FAO Guidelines (Doorenbos & Pruitt, 1977; Allen et al., 1998), potential 
evapotranspiration was calculated for a reference surface, ET0 [L·T-1], named reference 
potential evapotranspiration hereafter, and converted to a crop specific potential 
evapotranspiration, ETc [L·T-1], by means of a crop factor, kc [-]: 
 0ETkET cc ⋅= . Equation 1 
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In this manner, all meteorological influences are captured by the reference potential 
evapotranspiration whereas the crop factor, kc, captures the effect of the individual plants and 
surface conditions on both the crop transpiration and the soil evaporation alike. This crop 
factor applies to a disease-free crop under an optimum supply of water and nutrients but local 
and regional environmental factors can be considered (Doorenbos & Pruitt, 1977). Although 
the crop factor approach was originally developed for real crops, it can be expanded to natural 
vegetation. Here, crop factors are thought to represent average conditions over a uniform, 
vegetated surface for a fixed period of time and computed and aggregated accordingly as 
explained below. 
 
According to Allen et al. (1998) a new definition of the reference surface and the method to 
obtain the reference evapotranspiration were required as a result of the ambiguities that had 
arisen since the formulation of these concepts by Doorenbos & Pruitt in the FAO Guidelines 
of 1977. Thus, Allen et al. (1998) recommended replacing the originally preferred Penman 
Equation (Penman, 1948) by the Penman-Montheith Equation (Montheith, 1965) to calculate 
the reference potential evaporation. Through the inclusion of the canopy resistance, the 
Penman-Montheith Equation performs relatively accurate and consistent in both arid and 
humid climates whereas the Penman Equation was shown to overestimate the 
evapotranspiration frequently. Here the following version of the Penman-Montheith Equation 
has been used rather than the computational formula presented by Allen et al. (1998).  
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where es is the saturation vapour pressure, ea is the actual vapour pressure, both in [Pa], δ is 
the slope of the function of the saturation vapour pressure versus the air temperature 
[Pa·°C-1], γ is the psychometric constant [Pa·°C-1], ρa is the density of air [1.205 kg·m-
3], cp is the specific heat capacity of air [1004 J·kg-1·°C-1], Rn is the net incoming 
radiation and G the ground flux, both in [W·m-2], λv is the latent heat of vaporization 
[J·kg-1], and rs and ra are the surface and aerodynamic resistance respectively [s·m-1]. 

 
Following the FAO guidelines on crop water demands (Doorenbos & Pruitt, 1977), the 
reference potential evapotranspiration was calculated for longer periods, in this case the 
monthly resolution of the CRU dataset. On this ground, the ground flux was neglected, 
assuming no heat exchange between soil and air over longer periods. Of the variables of 
Equation 2, only ρa and cp are constants and the vapour pressure is specified directly by the 
CRU dataset. All other variables had to be calculated. So, the saturated vapour pressure was 
calculated from the average daily temperature under the underlying assumption of the 
isothermal conditions of the Penman Equation (Allen et al., 1998): 
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T  denotes here the average monthly temperature from the CRU dataset in [°C], which is 
referred to as T hereafter. 
 
The slope of the saturation vapour pressure versus the air temperature is calculated by (Allen 
et al., 1998): 
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The psychrometric constant, γ, is calculated as (Allen et al., 1998): 
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where P is the atmospheric pressure [Pa], e is the ratio of the molecular weight of water 
vapour and dry air [0.622 -]. 

 
The psychometric constant is not constant as both the latent heat of vaporization and the 
atmospheric pressure vary with the air temperature and the elevation respectively. Allen et al. 
(1998) ignore the variation in λv with T but this relationship is maintained here (Dingman, 
1994): 
 Tv 237010501.2 6 −⋅=λ .  Equation 6 

 
Due to this temperature-dependency of λv the calculated evapotranspiration of Equation 6 is 
slightly larger at higher temperatures and vice versa than with the computational formula of 
Allen et al. (1998). 
 
The atmospheric pressure is calculated here froma generalization of the gas law, assuming an 
overall temperature of 20 °C, assuming a typical atmospheric pressure at sea level of 101300 
Pa (Allen et al., 1998): 
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P ,  Equation 7 

where z is the elevation in [m], which in this case was given by the average elevation of the 
Hydro1k land mass within each cell. 

 
The effectiveness by which heat and vapour can be exchanged with the atmosphere depend on 
the vertical transport capacity of turbulent air, as expressed by the friction velocity of the 
eddies. Allen et al. (1998) estimate the diffusivity as the product of the friction velocity for 
the momentum transfer and the heat and vapour transfer: 
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where m and h stand for the momentum and heat and vapour transfer respectively. zm and zh 
are respectively the heights at which the wind speed and temperature/vapour pressure 
are measured, zD is the zero plane displacement height, z0 stands for the roughness 
length, k is the Karman constant, [0.41 -], and zu  is the monthly wind speed measured 
at height zm. 

 
In absence of wind speed fields in the CRU TS 2.1, the monthly climatology from CRU 
CLIM 1.0 was used to estimate zu . This value was capped at its lower end by 0.1 m·s-1 as 
some negative values were present over certain parts of the world, most noticeably over the 
mountains in SE Australia. The wind speed was taken to be representative for that at 10 m, 
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the air temperature, from which es was calculated, at 2 m. The zero plane displacement was 
set at 2/3 of the vegetation height. The roughness length, Z0m, for momentum transfer at 0.123 
times the vegetation height whilst that for heat and vapour transfer, Z0h, was set to 0.1 times 
Z0m. 
 
For each month, the incoming net radiation, Rn [W·m-2], was estimated as: 
 ( ) lsn RRR +−= α1   Equation 9 

where Rs is the incoming global shortwave radiation, Rl is the emitted long-wave radiation 
emitted by the earth surface, negative in general, and α is the albedo [-] determining 
the amount of shortwave radiation that is reflected back into the atmosphere. 

 
Rs was obtained from the extraterrestrial radiation, Ra. The extraterrestrial radiation was 
calculated for a standard year as a function of the Julian day number and latitude and 
averaged per month (Dingman, 1994), giving 12 maps. Thus, the extraterrestrial radiation 
replicates the typical seasonal change over the globe with some zonal variations arising due to 
the interaction of day length and the angle of the incoming solar radiation. Rs was then 
calculated from the fraction of actual sunshine hours over the maximum sunshine hours as 
originally proposed by Doorenbos & Pruitt (1977): 

 ( ) as RN
nbaR += ,  Equation 10 

where n/N is the fraction of actual sunshine hours over the maximum sunshine hours and a 
and b are empirical parameters that are respectively set to 0.25 and 0.50 (Doorenbos & Pruitt, 
1977). 
 
Rather than fractional sunshine hours n/N the CRU CLIM 1.0 and TS 2.1 specify fractional 
cloud cover and a relation between the two variables was required. To this end, the tabulated 
data of Doorenbos & Pruitt (1977) were used, which also were applied by New et al. (1998) 
in the construction of the CRU datasets to standardize the available observations of fractional 
sunshine hours and cloud cover prior to interpolation. New et al. (1998) observed that bias 
was introduced at high latitudes due to weak sunshine at low sun angles in winter whilst in 
tropical regions cloud cover is often overestimated by observers. Given 1088 stations with 
joint observations of n/N and cloud cover, they applied additional empirical adjustments to 
reduce these errors. Hence, the reported, corrected cloud cover has been translated into 
fractional sunshine hours from the tabulated data of Doorenbos & Pruitt (1977) by means of 
linear interpolation (Figure 1). 
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Figure 1: Relation between fractional cloud cover and fractional sunshine hours. 
 a+b are the empirical constants of Equation [10], determining the maximum incoming shortwave radiation for a 
cloudless sky, f(n/N)Rs is the fraction according to Equation 9 of extraterrestrial radiation reaching the surface 
and f(n/N)Rl is the reduction factor of the emitted long-wave radiation with increasing cloud cover. 
 
 
Net long-wave radiation was calculated from the Stefan-Boltzman Equation for both the 
incoming and outgoing long-wave radiation given the respective emissivity of the atmosphere 
and surface and the body temperature. For most surfaces, the emissivity can be taken as one. 
For clear skies, the atmospheric emissivity depends largely on humidity, whilst clouds act as 
blackbodies and increase the emissivity of the atmosphere. These effects on the net emitted 
long-wave radiation are captured by the formula proposed by Allen et al. (1998) through the 
vapour pressure and the relative incoming global radiation, assuming that under isothermal 
conditions both the earth surface and the overlying air are at the same temperature: 

 ( ) 





 −⋅−−= − 35.035.11043.434.0

0

34

R
ReTR s

aKl σ ,  Equation 11 

where σ is the Stefan-Boltzman constant [5.68·10-8 W·m-2·K-4], TK is the air temperature in 
Kelvin and R0 is the incoming global radiation under clear-sky conditions, 

ab)R(a + (see Figure 1). 

 
The reduction due to humidity ranges between 0.34 for completely dry air to zero when the 
vapour pressure exceeds 5.9 kPa. The correction due to the relative incoming global radiation 
ranges between 1 under clear-sky conditions to 0.1 under completely clouded conditions (see 
also Figure 1). 
 
Not specified so far are those variables that are dependent on the surface conditions being the 
albedo, α, the surface resistance, rs, and the vegetation height, zveg. As a reference surface 
Allen et al. (1998) proposed hypothetical grass cover on the ground that this crop is well 
studied. This reference surface is defined unambiguously as “a hypothetical reference crop 
with an assumed crop height of 0.12 m, a fixed surface resistance of 70 s m-1 and an albedo of 
0.23." These values have been included in the PCRaster script to calculate reference potential 
evapotranspiration, penmon_cru.txt  (see Appendix 3). 



7 of 46 

 
To convert the reference potential evapotranspiration to crop-specific values, crop factors are 
required (Equation 1). Conform the land surface parameterization in PCR-GLOBWB, these 
crop factors have to be specified for the fraction open freshwater, short vegetation and tall 
vegetation respectively and effective values have been calculated for each 0.5° cell. These 
crop factors compensate for any effects not taken into consideration in the calculation of the 
reference potential evapotranspiration. For water, this may concern the delayed exchange of 
heat between the air and deeper water bodies, lower surface roughness and lower albedo. For 
vegetated surfaces, it concerns amongst others the stomatal resistance and active leaf area as 
well as vegetated area and surface roughness. To account for temporal variations in these 
surface conditions, monthly crop factors were calculated according to the FAO Guidelines of 
Allen et al. (1998). These crop factors were based on the climatology over the period 1961-
1990 as calculated from the CRU TS 2.1 dataset. 
For the vegetated surface, temporal variations in the crop factor were assumed to correspond 
with the phenology of the vegetation over the growing season, prescribing the different stages 
of crop or plant development and vigour. These plant development stages can be subdivided 
into i) development proper, ii) full-cover or mid-season stage, iii) senescence, and iv) 
dormancy (Figure 2.a). The development stage is the moment between emergence of the first 
leaves or plants –depending whether the vegetation is perennial or annual- and the attainment 
of full cover. During the mid-season period vegetation is at its most vigorous, covering the 
largest area with the most active and healthy leaves partaking in transpiration. After full cover 
has been achieved, senescence set in, with leaves becoming less active and healthy, e.g., in the 
fall for temperate regions, until dormancy sets in. These stages pertain to natural vegetation 
that will exploit the available growing conditions fully. For actual crops, the length of these 
stages may be different, with full growth periods ranging between 100 to 150 days on average 
depending on the favourability of the meteorological conditions during the growing season 
(Doorenbos & Pruitt, 1977). The length of the full growing season is determined by the 
seasonal changes in radiation, temperature and moisture availability, as reproduced by the 
CRU TS 2.1 climatology and assuming that all other factors, e.g., fertility, are optimal. Here, 
temperature is used as a proxy for the limitations temperature and radiation pose to 
photosynthesis. Generally, growth is deemed impossible whenever killing frost occurs or the 
air temperature is below 5°C for long periods. This threshold is applied here to climatology of 
mean monthly temperature, which statistic captures the likelihood of killing frost in the long 
run. At higher latitudes, this temperature threshold also reflects the lack of radiation during 
winter. The seasonal course in temperature-driven growth was simulated by the BATS 
scheme (Dickinson et al., 1983): 

 ( )
2

1 
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TT
Tf   Equation 12 

where T is the monthly temperature, Tmin= 5°C and Tmax is the maximum temperature over 
the climatology, subject to the condition T≥ 5°C. f(T) is the temperature function that 
varies between 0 and 1 for T= Tmin and T= Tmax respectively.  

 
Tmin was kept at 5°C to reflect potentially favourable growth conditions in warmer climes. 
Tmax was allowed to vary as locally vegetation will exploit the growing conditions fully. 
 



8 of 46 

f (G)

kc

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1.10

J
a
n

F
e
b

M
a
r

A
p
r

M
a
y

J
u
n

J
u
l

A
u
g

S
e
p

O
c
t

N
o
v

D
e
c

G
ro
w
th
 f
u
n
c
ti
o
n
, 
c
ro
p
 f
a
c
to
r

a
p
p
ro
x
. 
1
0
%
 

g
ro
u
n
d
c
o
v
e
r

A
p
p
ro
x
. 

8
0
%
 

a
p
p
ro
x
. 
1
0
%
 

g
ro
u
n
d
c
o
v
e
r

iv ivi ii iii

D
o
rm

a
n
c
y

D
o
rm

a
n
c
y

D
e
v
e
lo
p
m
e
n

S
e
n
e
s
c
e
n
c
e

Full-cover,

mid-season

A)

f' (G)

Step

function

LAIrel

0

1

J
a
n

F
e
b

M
a
r

A
p
r

M
a
y

J
u
n

J
u
l

A
u
g

S
e
p

O
c
t

N
o
v

D
e
c

G
ro
w
th
 f
u
n
c
ti
o
n
, 
L
A
Ir
e
l

D)

f (W)f (T)

0

1

J
a
n

F
e
b

M
a
r

A
p
r

M
a
y

J
u
n

J
u
l

A
u
g

S
e
p

O
c
t

N
o
v

D
e
cG
ro
w
th
 f
u
n
c
ti
o
nB)

f (G)

f (T)·f (W)

10%

80%

f '(G)

0

1

J
a
n

F
e
b

M
a
r

A
p
r

M
a
y

J
u
n

J
u
l

A
u
g

S
e
p

O
c
t

N
o
v

D
e
cG
ro
w
th
 f
u
n
c
ti
o
nC)

 
Figure 2: Delineation of the growing season 
Delineation of the growing season: a) Growth stages adapted after Doorenbos and Pruitt (1977) for the growth 
function f(G) with corresponding crop factor; b) dependence of the growth function on temperature, f(T), and the 
cumulative moisture deficit, f(S); c) derivation of the growth function: raw growth function f(T)·f(W), initial 
growth function scaled between 0 and 1, f(G), and f’ (G) subdivided into growth stages on the basis of thresholds 
for emergence and full-cover (10 and 80% respectively); d) f’ (G), derived step function and relative LAI, LAIrel, 
after modification of the step function with the exponent a. 
Shown is the curve for S Spain (36.75°N, 4.25°W) with severe water shortage over the summer. The tuned 
maximum crop factor for this cell amounts to 0.56. 
 
Water stress will reduce the potentially growth and this was taken into account as a function 
of the cumulative moisture deficit over the year: 

 ( ) 






 ∆+= ∑
reqW

W
Wf 1,0max ,  Equation 13 

where W is the available moisture storage [mm], Σ∆W is the cumulative moisture deficit 
over the months that the moisture storage is exhausted and Wreq the required moisture 
to sustain vigorous growth. f(W) is the moisture stress function that varies between 1 
and 0 for conditions of no stress (Σ∆W= 0) to severe stress (Σ∆W≥ Wreq). 

 
The water balance equation underlying Equation 13 was applied to the climatology of the 
CRU TS 2.1 dataset until a dynamic equilibrium was obtained: 
 tcttt EkPWW 01 ⋅−+= −   Equation 14 

where t and t-1 are used to denote the current and previous month respectively, W is the 
moisture storage [mm], P is the monthly precipitation total and E0 is the reference 
potential evapotranspiration, both in [mm], and kc is a tentative crop factor for the 
vegetation [-]. 

 
Whenever Wt is below zero, it is added to the cumulative moisture deficit, if it is above zero, 
the cumulative moisture deficit is reset to zero. If the moisture storage exceeds the total 
available moisture storage capacity it is set to that value and the excess considered to be 
removed by drainage or runoff. This maximum soil moisture storage capacity was set to 300 
mm conform the Thornthwaite model for soil moisture availability. The tentative crop factor 
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varied between the crop factor for bare soil, ks, and that of the vegetation at full-cover, kfull, 
with the temperature growth function. The full-cover crop factor was decreased from 1.2 to 
0.2, the range of kfull to ks according to Allen et al. (1998) by 0.01 increments until the 
following conditions were met: i) the maximum available storage should exceed Wreq, the 
moisture storage required for vigorous growth, and ii) the maximum accumulated moisture 
deficit should not fall below -Wreq. The adaptation of this crop factor is thought to imitate to 
the adaptations by the vegetation to prolonged conditions of water stress through vegetation 
density and stomatal control. In this case Wreq was arbitrarily set to 125 mm, the upper limit 
of the class of deserts in the Holdridge life zone classification. When the adaptation of the 
tentative crop factor did not result in any positive soil moisture storage over the year, growth 
was deemed to be entirely driven by erratic rainfall. In these cases, f(W) was calculated 
alternatively as: 

 ( )
maxP

PWf = ,  Equation 15 

where P is the monthly precipitation total and Pmax the maximum over the climatology [mm]. 
 
The growth function, f(G), was then obtained as the product of f(T) and f(W) and scaled by its 
minimum and maximum to range between 0 and 1 (Figure 2). For its rising limb, this growth 
curve represents the development of ground cover over time, the maximum coinciding with 
the moment of most vigorous growth, its minimum with dormancy. This growth curve was 
subdivided into the four development stages on the following criteria conform Doorenbos and 
Pruitt (1977): 
- Vegetation emerges after dormancy as soon as f(G) exceeds 0.10 [-]; 
- Vegetation becomes fully dormant once f(G) falls below 0.10 [-]; 
- The full growing season extends from emergence to the onset of dormancy, including 

the optimum growth conditions; 
- Full-cover during the mid-season stage is attained in the period that the growth 

conditions is optimal and f(G) exceeds 0.80 [-]; 
- Senescence of the vegetation sets in when the growth curve starts to decline and f(G) 

falls below 0.60 [-]. 
 
On the basis of these criteria, the different points (emergence, full-cover, and senescence) 
were connected by straight lines whilst from the onset of senescence the falling limb was 
extrapolated to create a step function to relate the growth function to the relative change in the 
amount of active leaves participating in transpiration (f’ (G) scaled to range between 0 and 1). 
This fraction is taken to be proportional to the green LAI or leaf area index that is related 
directly to the crop factors by Allen et al. (1998). For vigorous vegetation, the increase in LAI 
will be fast during the early stages of growth and senescence and slower during the later 
stages. This is achieved by applying an exponent to the step function so: 

 ( )aGfLAIrel '∝ .  Equation 16 

This exponent a varies with the occurrence of prolonged water stress and is parameterized as: 

 
smaxfull

sfull

kk

kk
a

−
−

−= 5.01 ,  Equation 17 

where kfull is the tuned, tentative crop factor from the water balance calculation and kfull max 

and ks are the maxima for full-cover and bare soil (1.2 and 0.2 [-] respectively). 
 
The exponent a ranges from 0.5 when kfull equals kfull max and 1.0 when kfull equals ks. These 
limits were taken from Allen et al. (1998) and reflects that LAI does not fall in direct 
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proportion to stand density under vigorous growth conditions. This exponent is modified 
when the relative LAI function deviates from f’ (G): 
 ( )( )GfLAIaa rel '5.0 −+= .  Equation 18 

 
In this manner, the relative LAI increases when the growth function lies above the step 
function and decreases when it lies below it (Figure 2). 
 
Allen et al. (1998) related the crop factor to the LAI in the following way: 
 ( ) [ ]( )LAIkkkk mincfullcmincc 7.0exp1 −−−+= ,  Equation 19 

where kc min is the minimum crop factor for bare soil [≈ 0.15-0.20 -] and kc full is the estimated 
crop factor under full-cover conditions. 

 
Allen et al. (1998) recommended Equation 19 to estimate the crop factor during the mid-
season stage for annual types of vegetation that are either natural or in a non-pristine state, 
i.e., stands that do not attain optimum stand conditions in terms of height and density. Here, 
this equation is applied globally to all vegetation types and to the course of the LAI over the 
year given that the relative change in the LAI includes the wetting period during the initial 
stage for crops and natural vegetation alike and that vegetation will exploit the available 
growing season fully, either through competition or human intervention (multiple cropping 
systems, forage and green fertilization, etc.). 
The actual values of the LAI were based on the GLCC version 2 global land cover dataset 
with a resolution of 30 arc seconds (30” or nominally 1 km). The Olson ecosystem 
classification (Olson, 1994a, b) was preferred as this provides the most detailed distinction 
between natural vegetation and crop types in the different climate zones (Appendix 4). 
Moreover, estimates of the LAI during the growing season and dormancy for these classes 
could be obtained from Hagemann et al. (1999) so that the monthly LAI, from which the 
monthly crop factor was to be estimated, could be obtained from: 
 ( )dgreld LAILAILAILAILAI −+= ,  Equation 20 

where LAIrel is the relative change in the LAI over the year [0-1 -] and LAId and LAIg are the 
LAI [m 2·m-2] for each vegetation class respectively. 

 
For each class, these LAI values represent the effect of the seasonal and local conditions, e.g., 
water stress, dormancy, fertility and human intervention, on plant type and density. These 
seasonal LAI values range between 0 and 9.9 m2·m-2. No seasonality is present for some 
tropical vegetation types, deserts as well as for built-up areas (10 out of 73 classes excluding 
open water). Whenever the LAI is zero (12 out of 73 classes for LAId, 5 for LAIg) , the 
estimated crop factor will revert to that for bare soil evaporation, which is set to the upper 
limit of 0.20 [-] reported by Allen et al. (1998). Also, the estimated crop factor for the mid-
season stage will be less than 95% of the estimated value for full cover conditions, kc full, 
whenever LAIg is less than 4.3 m2·m-2 (35 classes for LAIg).  
The estimate for the mid-season crop factor under full-cover conditions under sub-humid, 
calm wind conditions –minimum daily relative humidity of 45% and a wind speed at 2 m·s-1 
at 2 m height- was obtained by (Allen et al., 1998): 
 hk fullc 1.00.1 += ,  Equation 21 

where h is the height of vegetation [m] and kc full is limited to 1.2 m when h>2 m. 
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This value is corrected for meteorological conditions other than sub-humid or calm wind 
speeds during the mid-season stage as follows (Allen et al., 1998): 

 ( ) ( )[ ]( ) 3.0

2 345004.0204.0 hRHukk minfullcfullc −−−+= ,  Equation 22 

where u2 is the wind speed at 2 m [m·s-1], RHmin is the minimum daily relative humidity [%] 
and h is the vegetation height. 

 
The meteorological correction entails an increase in the crop factor when the mid-season wind 
speed is higher than 2 m·s-1 and the minimum daily relative humidity is less than 45%. and 
vice versa. The wind speed was obtained from the CRU CLIM 1.0 climatology and multiplied 
by 0.75 [-] to scale it from 10 m to 2 m height and limited between 1 and 6 m·s-1 (cf. Allen et 
al., 1998). The minimum relative humidity was estimated as 100% x the ratio of the saturated 
vapour pressure for the minimum and maximum daily temperature, which could be estimated 
from the CRU climatology by adding or subtracting half the daily temperature range from the 
mean monthly temperature. Here, the minimum temperature is used as an approximation of 
the dew point temperature and therefore reduced by 2°C in arid and semi-arid regions, i.e., 
when cumulative water stress is present. RHmin is limited between 20 and 80% (cf. Allen et 
al., 1998). For both u2 and RHmin the mean monthly values over the mid-season stage were 
used. 
The vegetation height is limited between 0.1 and 10 m (Allen et al., 1998). Subject to these 
constraints, the vegetation height itself was estimated from the dataset of Hagemann et al. 
(1999) by dividing the vegetation roughness length, z0 veg [m], by 0.123 [-]. This returns the 
maximum of 10 m for most forest types (6 classes out of 73) and the minimum of 0.1 for most 
barren surfaces as deserts and glaciers (7 classes). 
 
In order to calculate the monthly crop factors at the spatial resolution of 0.5°, the phenology 
and the relative LAI, as well as the meteorological part of the correction factor of Equation 
22, were derived at 0.5° by means of a PCRaster Python script (see Appendix 2). The 
vegetation-dependent factors were processed by means of an AML script in ArcInfo and the 
0.5° monthly maps resampled to the GLCC resolution of 30”. This results into monthly grids 
at 30” that specify the crop factor for the Olson class for each cell. These grids have been 
aggregated to a resolution of 0.5° cells and converted back to PCRaster maps as input to PCR-
GLOBWB. As the scaling of the reference potential evapotranspiration to the crop-specific 
potential evapotranspiration is linear (Equation 1), the aggregated value is the mean of all 30” 
cells. To link the crop factors to the surface types of short and tall vegetation used in PCR-
GLOBWB, the subdivision of Appendix 4 has been used, with an additional distinction being 
made between natural vegetation, rain fed crops and irrigated crops in order to substitute any 
of these categories by other estimates if desirable. Hence, the overall crop factor for each 
vegetation type was calculated as the weighed average of each category per surface type, 
given their fractional cover within each grid cell. 
 
Over open water the potential evaporation differs from the reference potential 
evapotranspiration as a result of the difference in albedo, surface roughness and the heat 
storing capacity of deep water that influences heat transfer. Hence, a cell identified as a lake 
or reservoir was characterized as deep water, whereas the remaining cells with rivers were 
characterized as shallow water. For the river cells, the crop factor for open water applied to 
the channel area itself, as prescribed by the channel width and length used in PCR-GLOBWB, 
whilst an additional crop factor applied to the remaining wetland area. Thus, the monthly crop 
factor for the fraction open fresh water in each cell was computed as: 
 deepcwaterc kk = , if identified as lake or reservoir, else 
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where kc is the crop factor [-] for the entire fresh water surface, deep and shallow water and 
wetland area respectively, ∆Xchannel and ∆Lchannel are the channel width and length [m], 
fwater is the fraction of land area within each cell [-], and ∆X2 is the land surface area 
within each cell [m2]. 

 
For all freshwater surfaces it was assumed that evapotranspiration could only occur over ice-
free surfaces. This was achieved by excluding all months for which the mean monthly air 
temperature was below 0°C. 
Ice-free shallow water was assumed to have no appreciable heat storing capacity and its crop 
factor assumed to be constant with time. It was calculated according to Equation 21 with a 
vegetation height of 0.1, the minimum height according to Allen et al. (1998), to account to 
the varying influence of surrounding vegetation on the roughness as many rivers have widths 
much smaller than the nominal 1 km GLCC resolution. The same value was applied to lakes 
and reservoirs in the tropics, which were taken equivalent with an average annual air 
temperature of 20°C. Elsewhere, deep water was thought to have some potential heat storing 
capacity and wetland vegetation to develop over the growing season, provided that the surface 
was ice-free. In both cases, this was simulated by the BATS scheme of Equation 12 using the 
mean monthly air temperature from the 1961-1990 climatology with Tmin and Tmax being 
defined by the minimum and maximum air temperature over the period that T> 0°C. 
 
Outside the tropical region, the crop factor may decrease by 20 to 30% in early spring due to 
heat storage and increase by a similar value in late autumn (Doorenbos and Pruitt, 1977). To 
emulate the heat storing capacity of deep water the temperature function was averaged with 
the previous month, assigning a value of zero whenever ice was presumed to be present. Over 
the ice-free months, the crop factor was then modified by 20% of that of shallow water for 
f(T)= 0 and f(T)= 1 respectively., adjusting the values so that shallowcdeepc kk =  as expected on 

ground of energy conservation. 
For the wetland areas, the maximum crop factor was set to 1.2 [-], the minimum varying with 
the minimum monthly temperature: for tropical regions, the value was set to 1.0, for 
temperate regions without frost to 0.6 and for regions with killing frost at 0.3 [-] based on 
values proposed by Allen et al. (1998). Between these extremes, the crop factor was 
distributed on the basis of the temperature function f(T), kc being zero during the months with 
frost. To account for the effect of humidity and wind speed, the monthly values were adjusted 
by the meteorological factor of Equation 22, applying a typical vegetation height of 2 m for 
tropical regions and of 1 m elsewhere. 
 
 
Updates to the handling of evapotranspiration within PCR-GLOBWB 
 
The reference potential evapotranspiration and the crop factors derived from the CRU TS 2.1 
dataset necessitate an update to the processing of the evapotranspiration in PCR-
GLOBWBWB. In the model, a distinction is made between bare soil evaporation, which is 
drawn from the upper soil layer after deduction of any evaporation of liquid water stored in 
the snow cover, and transpiration by vegetation, which is drawn from both soil layers in 
proportion to the relative root volume present after deduction of any evaporation of 
intercepted rainfall. So far, mainly actual evapotranspiration, e.g., from the ECMWF ERA-40 
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reanalysis, was imposed. This actual evapotranspiration was fractioned on the basis of 
vegetation cover only and merely limited by the availability of soil moisture in the pertinent 
layers. 
The use of the reference potential evaporation in combination with the crop factor implies that 
no distinction between soil evaporation and transpiration is made; kc ranges from a minimum 
value for bare soil evaporation, kc min, to a maximum value during the height of the growing 
season, kc full, dependent on the LAI (see Figure 2and Equation 21). Hence, fractioning on the 
basis of the vegetation cover can be abandoned and the bare soil potential evaporation is taken 
to be equivalent to: 
 00 ETkES minc ⋅= ,  Equation 24 

and the total potential transpiration to: 
 ( ) 00000 ETkkETkETkESETT minccminccc −=⋅−⋅=−= ,  Equation 25 

where ETc is the monthly crop specific potential evapotranspiration, ET0 the potential 
reference evapotranspiration, both in [L·T-1] (Equation 1), and kc and kc min [-], are the 
monthly crop factor and the minimum crop factor for bare soil evaporation 
respectively. 

 
Reductions of the potential bare soil evaporation and the transpiration are directly or 
indirectly related to the available soil moisture storage. For the bare soil evaporation, no 
reduction is applicable for the saturated fraction, x, of each cell as obtained by the Improved 
Arno Scheme of Hagemann and Gates (2003), except that the rate of evaporation cannot 
exceed the saturated hydraulic conductivity of the upper soil layer. Likewise, the potential 
bare soil evaporation over the unsaturated area, 1-x, is only limited by the unsaturated 
hydraulic conductivity of the upper soil layer: 
 ( ) ( ) ( )( )0101 ,min1,min ESkxESkxES Es θ−+⋅= .  Equation 26 

 
The uptake of transpiration by plants depends on the total available moisture in the soil layers. 
The fraction between the actual and potential transpiration rate is given by: 

 ( ) B
EE

tf 3

501

1
−+

=
θθ

  Equation 27 

where θE50 is the effective degree of saturation at which the potential transpiration is halved 
and B is the coefficient of the soil water retention curve according to Clapp and 
Hornberger (1978). 

 
The lack of aeration prevents the uptake of water by root under fully saturated conditions. The 
average degree of saturation over the unsaturated fraction of the cell is estimated by:  
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where w is the sub-grid distributed maximum moisture storage and w(x)the actual storage 
corresponding to the fraction x of saturation, the uppercase symbols refer to the 
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minimum and maximum storage capacities and the cell-averaged storage (Wmin, Wmax 
and W respectively [m]) and b is the shape factor describing the distribution of w. 

 
In the above, the root fraction, r frac, is only considered in obtaining the parameters B and θE50 
of the scaling function, for which the soil water retention characteristics of layers i were 
weighed by both the root fraction and the maximum storage capacity per layer. The actual 
transpiration rate is partitioned over the upper two soil layers on the basis of the relative 
storage Wi/ΣWi by local soil water availability, if applicable. 
 
Downscaling CRU monthly values to daily model input 
 
Because of the presence of non-linear processes like interception, the monthly fields of the 
CRU TS 2.1 have to be downscaled to daily fields in order to force PCR-GLOBWB 
successfully. The required input consists of precipitation, temperature and potential 
evapotranspiration which were broken down by means of daily fields of temperature and 
precipitation as obtained from the ERA-40 reanalysis. The ERA-40 re-analysis was preferred 
as this provides a high-quality global analysis of the atmospheric conditions over the past four 
decades (Uppala et al., 2005) regardless of errors in the absolute errors like the severe 
overestimation of precipitation over tropical areas (Troccoli and Kållberg, 2004). In this 
manner, the CRU forcing is directly applicable to the period 1958-2001 for which calendar 
years actual ERA-40 results are available. Prior to 1958, ERA-40 years should be used as 
proxy for the then present atmospheric conditions and selected on the basis of annual 
temperature and precipitation over larger areas, e.g., continents, as witnessed by the CRU TS 
2.1 dataset. The daily fields of precipitation and temperature were obtained from six 6-hourly 
forecasts from 12 hours UTC onwards where the first two forecasts were removed to avoid 
any bias due to spin-off effects. Thus, 24-hour forecasts were obtained from 00 hours UTC 
onwards, being the daily sum of convective and large-scale precipitation for rainfall and the 
average 2m-air temperature for the temperature. 
For consistency, the forcing complied entirely with the CRU dataset, the aggregated daily 
values returning the monthly statistic, although one could argue that the ERA-40 daily 
temperature fields are more likely to approximate the actual conditions. In the case of 
temperature, a simple additional anomaly was used: 
 ( )ERACRUERA TTTT −+= ,  Equation 29 

where T denotes the daily temperature [°C] and T  the mean monthly value for the ERA-40 
and CRU datasets. 

 
To obtain daily reference potential evapotranspiration, E0 [m·day-1], the monthly value was 
multiplied with the normalized ERA-40 daily temperature, which was transformed to Kelvins 
to take care of freezing: 

 
2.273
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00 +

+=
ERA

ERA

T

T
EE .  Equation 30 

 
For the precipitation the preferred anomalies were also multiplicative: 

 
ERA

CRU
ERA P

P
PP = .  Equation 31 
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Although ERAP  is always greater than zero, severe rounding errors may occur whenever it is 
very small. To overcome this problem, a threshold was defined as the mean daily precipitation 
for the present month according to the CRU dataset that had to be exceeded for the 
multiplicative anomaly to be used: 

 
CRU

CRU
crit W

P
P = ,  Equation 32 

where CRUW  is the monthly number of wet days. 

 
If the threshold was not exceeded, as might be expected in some arid regions, a daily rainfall 
estimate was used for a limited number of days. First, a temperature limit for the ERA-40 re-
analysis was estimated by linear interpolation: 

 ( )
N

W
TTTT CRU

ERAminERAmaxERAminERAcrit −+= ,  Equation 33 

where Tmax and Tmin are the maximum and minimum daily ERA-40 temperature for a given 
month, CRUW  is the monthly number of wet days in the CRU dataset and N is the total 

number of days in the current month. 
 
For each month the number of days that the ERA-40 temperature falls below this threshold is 
calculated as an approximation of the wet days, ERAW , and if the temperature is evenly 

distributed this will approximate CRUW . The corresponding daily rainfall is applied for each 

day that ERAcritERA TT <  and calculated as: 

 
ERA

CRU

W

P
P =ˆ .  Equation 34 

 
Results 
 
CRU timeseries and climatology 
 
Of all variables contained by the CRU TS 2.1 dataset that are directly or indirectly required 
by PCR-GLOBWB, the mean annual values for the climatology 1961-1990 are presented in 
Figure 3. 
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Figure 3: Mean annual values of CRU variables of interest for the climatology 1961-1990. 
Top row: precipitation (PRE, mm per year) and temperature (TMP, °C); bottom row: number of wet days (days 
per year), cloud cover (fraction), vapour pressure (Pa) and daily temperature range (°C). 
 
For the primary variables of precipitation and temperature also temporal variability was 
considered. Over the full period of the CRU TS 2.1 dataset monthly values were summed to 
annual totals. From these annual totals, the mean and standard deviation were calculated for 
three different periods: i) the total length of the CRU TS 2.1 series, ii) the reference 
climatology period 1961-1990, and iii) the period 1958-2001, covering most of the ERA-40 
reanalysis period. These periods were subsequently compared by means of Student’s t-test 
where the t-statistic was calculated as: 
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where x  stands for the mean, s2 for the variance and n for the number of years for the sub-
periods 1 and 2 respectively. t is the test statistic with n1+n2-2 degrees of freedom. 

 
This test statistic was calculated for each cell with respect to the climatology and binned for 
four absolute significance levels (0.01, 0.05, 0.10 and 0.25 two-tailed; Figure 4). 
 

 
Figure 4: Significance of differences in mean between the climatology over 1961-1990 and the total CRU TS 2.1 
period 1901-2002 (top row) and the ERA-40 sub-period 1958-2001 (bottom row) for precipitation (left) and 
temperature (right). Red colours reflect that the climatology has a lower mean, green colours that it has a higher 
mean than the comparison period. 
 
For the entire globe and all continents the variation in precipitation and temperature was 
calculated over the full length of the CRU TS 2.1 period (1901-2002; Figure 5). For the 
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climatology over the years 1961-1990, also the zonal distribution of both variables was 
calculated for each season (Figure 6 
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Figure 5: Variations in annual global and continental precipitation (left) and temperature (right) over the CRU 
TS 2.1 period 1901-2002. 
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Figure 6: Seasonal variation in precipitation left and temperature (right) per half-degree zone for the 1961-1990 
climatology: DJF (December-January-February), MAM, JJA, and SON. 
 
To evaluate the discrepancy between the ERA-40 reanalysis and the CRU TS 2.1 dataset, the 
difference between the two datasets has been calculated for the mean annual precipitation and 
temperature over the period 1958-2001 (Figure 7). 
 

 
Figure 7: Difference fields for precipitation (left), and temperature (right) between the ERA-40 reanalysis and 
CRU dataset over the period 1958-2001. 
 
 
Holdridge life zone classification 
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The Holdridge life zone classification calculated from the CRU climatology over the years 
1961-1990 can be compared to the global coverage generated by Leemans (1989) on the basis 
of a dataset of 5500 stations with monthly temperature and precipitation, distributed over the 
world and covering between 10 and 40 years within the preferred period of 1931-1960 
(Leemans, 1990). The aggregated dataset was used that combines the 39 Holdridge life zone 
classes into 14 larger entities (Cold Parklands; Forest Tundra; Boreal Forest; Cool Desert; 
Steppe; Temperate Forest; Hot Desert; Chaparral; Warm Temperate Forest; Tropical Semi-
Arid; Tropical Dry Forest; Tropical Seasonal Forest; Tropical Rain Forest). A cross-table of 
this map with the CRU-based classification was made and the extended CRU classification 
re-classified accordingly. In total, 44% of the land surface had no consistent match in 
Leemans’ aggregated life zones classification, with 7% of the mismatch attributable to a 
difference in land mask. The poorest agreement concerned the polar zones and some tropical 
regions, due to differences in temperature and precipitation over these areas (Figure 8).  
 

 
Figure 8: Aggregated Holdridge Life zones classification according to Leemans (1989) for the CRU 1961-
1990 climatology. Areas without a consistent match are shaded. 

 
 
Reference potential evapotranspiration 
 
The monthly reference potential evapotranspiration was calculated for the period 1901-2002 
covered by the CRU TS 2.1 dataset and summed to yield the annual total. Similar to the 
primary variables of precipitation and temperature, the differences between the three main 
periods were tested for their significance (Figure 9). 
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c) d)

b)a)

 
Figure 9: a) Mean and b) standard deviation in reference potential evapotranspiration E0 over the period 1961-
1990 (CRU baseline climate); c) significance of differences in mean E0 over the entire CRU TS 2.1 period 
(1901-2002) and d) the period of the ERA-40 reanalysis (1958-2001). 
 
For the entire globe and all continents the variation in the reference potential 
evapotranspiration, E0, was equally calculated over the full length of the CRU TS 2.1 period 
(1901-2002; Figure 10.a). For the climatology over the years 1961-1990, also the zonal 
distribution of E0 was calculated for each season. 
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Figure 10: Variations in annual global and continental reference potential evapotranspiration, E0, over the CRU 
TS 2.1 period 1901-2002; and, b) seasonal variation in E0 per half-degree zone for the 1961-1990 climatology: 
DJF (December-January-February), MAM, JJA, and SON. 
 
No direct comparison was possible between the CRU and ERA-40 evapotranspiration as the 
former was calculated as reference potential evapotranspiration in this study and the latter was 
reported as the actual evapotranspiration from the ECMWF land surface model. 
 
 
Crop factors 
 
Crop factors were calculated for the GLCC dataset as described by the methodology above. 
The actual crop factor was based on the vegetation characteristics linked to the GLCC dataset 
and the meteorological correction factor of Equations 20 and 22. The length of the growing 
season could be constrained by temperature or moisture availability. Figure 11 shows the 
global distribution of the estimated crop factor on the basis of the water balance of Equation 
14. It identifies the major arid regions of the world as well as regions with severe seasonal 
water shortage such as the Mediterranean, part of the Asian monsoon-belt (e.g., India), sub-
tropical South America, and the Arctic deserts (cf. Figure 8). This crop factor not only 
influences the length of the growing season but also the rate at which the vegetation 
transforms from one stage to the other (Figure 2). 
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Figure 11: Crop factor optimized for moisture availability. 
 
The length of the entire growing season and the optimum season are shown in Figure 12. 
Except for the arctic and some arid regions, most areas reveal a considerable growing season. 
The length of the growing season with optimum conditions is much lower, especially in 
temperate areas where temperature is the limiting factor or in semi-arid or arid regions, where 
moisture is a limiting factor. Some seasonality is also present over the tropics. For Africa, this 
is also shown by the Holdridge classification (Figure 8). It is less widespread, however, in 
South-America, and seasonality may be introduced here as the optimized crop factor of Figure 
11 that is at its maximum value. The influence of seasonality on growth is equally manifested 
by the seasonal relative LAI (Figure 13). 

a) b)

 
Figure 12: Length of growing season (months per year): a) full season, b) optimum season. 
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Figure 13: Seasonal variation in relative LAI. From topleft, clockwise: DJF, MAM, JJA, SON 

 
The actual crop factor ranges between the minimum of 0.2 [-] for bare surfaces to the 
maximum that depends on height (Equation 20). Theoretically, the maximum value is limited 
to 1.2 [-] but this value can increase as result of the local meteorology (Equation 21; Figure 
14). Increased values are found above areas that have a low relative humidity or high wind 
speeds. Areas with increased crop factors are present over the semi-arid regions of North 
America, the Mediterranean, the Sahara, Central Asia and Australia. The largest increase are 
found over Greenland and Spitsbergen and northwest South-America. As there is no growing 
season in the polar region the elevated values are of no direct concern. In South-America the 
higher values are the result of low vapour pressures (Figure 3) with exceptional high wind 
speeds of over 20 m·s-1during summer. Once corrected for the local meteorology, maximum 
crop factors for tall vegetation reach a maximum value of 1.26. For the short vegetation type, 
the maximum value is 1.13 as the shorter vegetation height yields a lower maximum crop 
factor to start with (Equation 20; Appendix 4). The minimum and maximum values of the 
crop factors of short and tall vegetation, aggregated from 30 arc sec to 0.5°, are shown in 
Figure 15. Overall, this picture agrees well with the expectation that tall vegetation will have 
larger crop factors as this vegetation type is generally taller and perennial, thus having less 
seasonal variation than short vegetation types that include annuals like true crops. There is no 
increase in crop factors over true deserts covered by short vegetation only. Remarkably, some 
areas with lower vegetation of the same signature are found in other areas, like the northeast 
of the USA and the Congo basin. Partly, this corresponds with urban areas or with wrongly-
classified cells (e.g., deserts occurring within the rain forest of the Congo basin). In general, 
these areas are small, covering less than 1% of each cell, and can be expected to have little 
influence on the total outcome of the model. 
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Figure 14: Meteorological correction factor of Equation [X] for ( ) 13
3.0

=h . 

 
Figure 15: Minimum and maximum values of the crop factor for short (left) and tall vegetation as obtained for 
the GLCC dataset. Grey areas indicate regions where a particular type is absent. 
 
Open water evapotranspiration is modified by temperature only, heat storage effects leading 
to a shift in time compared to the air temperature. The maximum crop factor amounts to 1.48 
in dry areas, the minimum is zero in regions where seasonal ice covers occur. 
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Figure 16: Minimum and maximum crop factors for open water evaporation 

 
Conclusions 
 
This report describes in detail the parameterization and particularities of PCR-GLOBWB 
related to CRU forcing. Emphasis is placed on evapotranspiration, as this requires the 
formulation of crop factors and the calculation of reference potential evapotranspiration 
according to the FAO guidelines (Allen et al., 1998). Following the land surface division in 
PCR-GLOBWB, crop factors have to be defined for three surfaces (i.e., short and tall 
vegetation and open freshwater) and over time. The basic assumption that natural vegetation 
and planted crops strive to maximize the available resources underlie the definition of the 
crop factors. Temperature and moisture availability limit the available growing season and is 
relative only. The influence of the actual vegetation, as it arises from local conditions as 
nutrient availability etc., is taken into account through the parameterization of the LAI and 
vegetation heights as associated with the GLCC dataset. 
Large differences exist between the ERA-40 and CRU dataset and between the different 
periods within the CRU dataset itself (i.e., climatology or full time series). In term of 
significance, temperature appears to differ more often than precipitation. However, 
temperature is more constant and significance in the difference-of-means test is lost due to the 
large variability of rainfall. Particular over tropical areas the ERA-40 dataset predicts much 
more precipitation than the CRU whereas the trend is reversed over temperate regions. 
Differences within the CRU dataset arise from changes in the density of the observation 
network (Congo, South America) but some changes might be attributed to different degrees of 
activity of large-scale climate phenomena as the ENSO over the respective periods (e.g., 
south of USA). Earlier parts of the CRU TS 2.1 should therefore be used with care. 
In general, the CRU climatology leads to a consistent vegetation distribution as indicated by 
the Holdridge classifications. Discrepancies between the original dataset of Leemans (1989) 
and the CRU-based distribution mainly arises as a result of an inclusion of more stations and a 
different incorporation of surface elevation. 
The crop factors from the CRU fall within the range of reasonable estimates as listed by Allen 
et al. (1998) and Doornkamp and Pruitt (1977). Also, there is a good agreement with reported 
growing seasons and phases. Since these crop factors partly alleviate the differences in the 
reference potential evapotranspiration as found for the different periods of the CRU database, 
the CRU-derived climatology of crop factors can be applied to the entire CRU TS 2.1 period, 
provided it can be assumed land cover remains unaltered, although this may result in an 
underestimation of the variability in actual evapotranspiration for the earlier part of the CRU 
period. 
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Appendix 1: Code of cru_grid2asc.f 
 
 PROGRAM CRUTSS 
C 
 IMPLICIT NONE 
C Reads in new 0.5° CRU global gridded dataset containing the years 1901-2000 
C and converting them to individual ascii files for the surface fields 
specified in 
C VARID. All data are processed as are. RvB, UU, April 2008 
C 
 INTEGER NCOLS,NROWS,NMONTHS 
 PARAMETER (NCOLS= 720,NROWS= 360,NMONTHS= 12) 
 INTEGER STARTYEAR, ENDYEAR, NVAR 
 PARAMETER (STARTYEAR= 1901, ENDYEAR= 2002, NVAR= 1) 
 INTEGER MONTHINDEX,YEARINDEX,VARINDEX 
 INTEGER XCNT,YCNT 
 INTEGER IVAL(NCOLS,NROWS,NMONTHS) 
 CHARACTER*(*) PRFX, SFFX 
 PARAMETER (PRFX= "cru_xxx",SFFX= '.asc') 
 CHARACTER*30 GRIDFILE,INFILE 
 CHARACTER*18 ASCFILE 
 CHARACTER*2 MONTHSTR 
 CHARACTER*3 VARID(NVAR),VARSTR 
 CHARACTER*4 YRSTR 
C 
C DATA VARID /"wet","vap","tmp"/ 
 DATA VARID /"dtr"/ 
 GRIDFILE="cru_ts_2_10.1901-2002.xxx.grid" 
 DO VARINDEX=1,NVAR 
   VARSTR= VARID(VARINDEX) 
   INFILE= GRIDFILE 
   INFILE(23:25)= VARSTR 
   OPEN(UNIT=1,FILE= INFILE,STATUS="OLD",ERR= 999) 
   DO YEARINDEX= STARTYEAR,ENDYEAR  
      CALL STRCONV(YEARINDEX,YRSTR,4) 
      READ (1,*) IVAL 
      DO MONTHINDEX= 1,NMONTHS 
        CALL STRCONV(MONTHINDEX,MONTHSTR,2) 
     WRITE (*,'(4X,A3,1X,I4,1X,I2)') VARSTR,YEARINDEX,MONTHINDEX 
     ASCFILE= PRFX//YRSTR//"_"//MONTHSTR//SFFX 
     ASCFILE(5:7)= VARSTR 
     OPEN(UNIT=2,FILE= ASCFILE,STATUS= "REPLACE",ERR= 998) 
     DO YCNT= NROWS,1,-1 
      DO XCNT= 1,NCOLS 
       WRITE (2,'(I5,1X,$)') IVAL(XCNT,YCNT,MONTHINDEX)      
      END DO 
      WRITE (2,*) 
     END DO   
     CLOSE(UNIT=2,STATUS= "KEEP") 
      END DO 
   END DO 
   CLOSE(UNIT=1) 
 END DO 
 GOTO 999 
998 WRITE (*,'(2X,"Program terminated with error")') 
 GOTO 1000 
999 WRITE (*,'(2X,"Program terminated")') 
1000 END 
C 
C ******************************************************* 
 SUBROUTINE STRCONV(XVAL,XSTR,DIGITS) 
C 
C DECLARATION 
C  
 INTEGER XVAL, CNT, DIGITS, ID1, ID2 
 CHARACTER*(4) XSTR 
 CHARACTER*1 CD 
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C 
C STEPPING THROUGH DIGITS 
 ID2= 0 
 XSTR= '' 
 DO CNT= 1,DIGITS 
   ID1= ID2 
  ID2= INT(XVAL*0.1**(DIGITS-CNT)) 
  ID1= ID1*10 
  CD= ACHAR(INT(ID2-ID1)+48) 
  XSTR(CNT:CNT)= CD 
 END DO 
C 
 RETURN 
C 
 END 
 

Python script mapgen_cru.py 
#Converts ascii files from the CRU TS1 dataset to pcraster maps 
 
import  os, zlib, zipfile 
import pcraster as pcr 
 
def zipToDir(file, dir): 
    try: 
        os.mkdir(dir, 0777) 
    except: 
        pass 
    zfobj = zipfile.ZipFile(file) 
    for name in zfobj.namelist(): 
        if name.endswith('\\'): 
            try: 
                os.mkdir(os.path.join(dir, name)) 
            except: 
                pass 
        else: 
            try: 
                outfile = open(os.path.join(dir, name), 'r') 
                outfile.close() 
            except: 
                outfile = open(os.path.join(dir, name), 'w') 
                outfile.write(zfobj.read(name)) 
                outfile.close() 
 
def ascToMap(FileNameIn,FileNameOut,CloneFile): 
  command = 'asc2map %s %s --clone %s -S -m -999'   % 
(FileNameIn,FileNameOut,CloneFile) 
  os.system(command) 
 
#declaration: parameter suffices of input files and number of parameters 
ParID= ['dtr'] # 'pre','cld','tmp','vap','wet'] # 
#folder with data 
PathCRU= 'i:\\cru05_timeseries\\newlygridded' 
#start and end year of sequence 
StartYear= 1901 
EndYear= 2002 
NMonths= 12 
#Clone map definition 
CloneFile= '..\\..\\globalclone.map' 
 
print 'PROCESSING OF CRU TS1 dataset of monthly global meteorological fields' 
for Par in ParID: 
    print '\tProcessing %s' % Par 
    #sets input path and tests for the existence of last written data file after 
    #checking for existing zip-files and extracting any non existing data 
    print '\tchecking for availability of non-processed data in zip-files' 
    PathIn= PathCRU 
    if os.path.exists(PathIn): 
        os.chdir(PathIn) 



28 of 46 

    else: 
        break 
    PathOut= os.path.join(PathIn,Par) 
    try: 
        FileNameIn= 'cru05_%s_asc.zip' % (Par)         #archive with monthly ascii 
files 
        zipToDir(FileNameIn,PathOut) 
        FileNameIn= 'cru05_%s.zip' % (Par)             #archive with monthly 
pcraster maps 
        zipToDir(FileNameIn,PathOut) 
    except: 
        print '\t\tno exisiting zipfiles found' 
        pass 
        #opening zip files for output 
    #-monthly text and map files, ascii output and stack 
    FileNameOut= 'cru05_%s_asc.zip' % (Par)         #archive with monthly ascii 
files 
    AsciiZip= zipfile.ZipFile(FileNameOut,'w',zipfile.ZIP_DEFLATED) 
    FileNameOut= 'cru05_%s.zip' % (Par)         #archive with monthly pcraster maps 
    StackZip= zipfile.ZipFile(FileNameOut,'w',zipfile.ZIP_DEFLATED)        
    #loop for years 
    PathIn= PathOut 
    for YearOrd in range(StartYear,EndYear+1): 
        #processing files if file of interest found 
        print '\tconverting ASCII to CSF' 
        print '\t\t%s' % YearOrd 
        if os.path.exists(PathIn): 
            os.chdir(PathIn) 
        else: 
            break 
        FileNameCheck= 'cru_%s%04d_%02d.asc' % (Par,EndYear,NMonths) 
        CheckFileExists= 0   
        while CheckFileExists == 0: 
            try: 
                cf= open(FileNameCheck,'r') 
                CheckFileExists= 1 
                cf.close() 
            except: 
                CheckFileExists= 0 
        #= > continuation when file found 
        #generating maps for present variable 
        #loop for months 
        for MonthOrd in range (1,NMonths+1): 
            #filenames 
            FileNameIn= 'cru_%s%04d_%02d.asc' % (Par,YearOrd,MonthOrd) 
            FileNameOut= 'cru_%s%04d.%03d' % (Par,YearOrd,MonthOrd) 
            #conversion 
            CheckFileExists= 1 
            try: 
                cf= open(FileNameIn,'r') 
                cf.close() 
            except: 
                CheckFileExists= 0 
            if CheckFileExists== 1: 
                ascToMap(FileNameIn,FileNameOut,CloneFile) 
            #zipping files 
            try: 
                AsciiZip.write(FileNameIn) 
                StackZip.write(FileNameOut) 
            except: 
                pass 
    #closing zips 
    AsciiZip.close()                 
    StackZip.close() 
    #removing files in present path   
        for Root, Dirs, Files in os.walk(PathIn): 
            if len(Dirs) > 0: 
                print 'subdirectories present in %s !' %(Root) 
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                break 
            else: 
                for FileCount in range(0,len(Files)): 
                    FileNameOut= Files[FileCount] 
                    os.remove(FileNameOut)  
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Appendix 2: Python script cru_proc.py 
# Processes CRU Timeseries and Climatology to derive: 
# 1) climatology over the years 1961-1990 
# 2) detect any change in the mask over the CRU timeseries 
# 3) create a patch for any area missing between the climatology and timeseries 
# 4) update the input where necessary (done internally) and 
#  calculate the reference potential evapotranspiration over the globe 
# 5) return statistics 
# 6) calculate temporal course of water stress and temperature in order to 
determine growing season 
# 7) calculate temporal statistics of annual precipitation, temperature and 
evapotranspiration 
#RvB, UU, June 2008 
#includes new parameterization of the growing season 
 
import  os, zlib, zipfile,shutil,calendar 
import pcraster as pcr 
 
def zipToDir(file, dir, a_name): 
 #extracts all existing file from directory 
    try: 
        os.mkdir(dir, 0777) 
    except: 
        pass 
    zfobj = zipfile.ZipFile(file) 
    for name in zfobj.namelist(): 
        if name.endswith('/'): 
            try: 
                os.mkdir(os.path.join(dir, name)) 
            except: 
                pass 
        else: 
            try: 
                outfile = open(os.path.join(dir, name), 'r') 
                outfile.close() 
            except: 
                outfile = open(os.path.join(dir, name), 'w') 
                outfile.write(zfobj.read(name)) 
                outfile.close() 
 
def generateNameT(RootName,Number): 
 #generates file name akin to old pcraster py generateNameT 
 #-split RootName into different elements, keeping root of file name only 
 # to expand file name and convert Number to string: takes up to 8 digits 
timesteps 
 NumStr= str(int(Number)) 
 NrChar= len(NumStr) 
 if NrChar>8: 
  print 'number exceeds allowable bounds' 
 else: 
  FileNameList= (RootName.split('/')) 
  FileNameIn= FileNameList[len(FileNameList)-1][0:11-NrChar] 
  while len(FileNameIn)<8: 
   FileNameIn= FileNameIn+'0' 
  FileNameIn= FileNameIn+'000' 
  if len(NumStr)<3: 
   while len(NumStr)<3: 
    NumStr= '0'+NumStr 
  NrChar= len(NumStr) 
  FileNameOut= '' 
  for icnt in range(0,12-NrChar-1): 
   FileNameOut= FileNameOut+FileNameIn[icnt] 
  for icnt in range(0,NrChar): 
   FileNameOut= FileNameOut+NumStr[icnt] 
  FileNameIn= FileNameOut 
  FileNameOut= '' 
  for icnt in range(0,8): 
   FileNameOut= FileNameOut+FileNameIn[icnt] 
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  FileNameOut= FileNameOut+'.' 
  for icnt in range(8,11): 
   FileNameOut= FileNameOut+FileNameIn[icnt] 
  for NrChar in range(len(FileNameList)-2,-1,-1): 
   FileNameOut= FileNameList[NrChar]+'/'+FileNameOut 
  return FileNameOut 
 
# MAIN 
# spatial attributes and global options 
CloneMap= 'maps/globalclone.map' 
pcr.setclone(CloneMap) 
pcr.setglobaloption('radians') 
cruClone= pcr.cover(pcr.readmap(os.path.join('maps','cru_clone.map')),0) 
# duration of total timeseries 
NMonths= 12 
StartYear= 1901 
EndYear= 2002 
# CRU timeseries parameters and conversion factors 
# (not used on original maps and derived climatology) 
# to: millimeter,degree Celsius, percentage, hPa and days 
CRUArchivePath= '../../archive/crutss' 
CRUTSSPath= 'newlygridded' 
CRUClimPath= 'climatology' 
CRUGrowthPath= 'growingseason' 
CRUPeriodPath= 'stats' 
CRUTSSParamList= ['tmp','pre','cld','vap','wet','dtr'] 
CRUTSSConvList= [0.1,0.1,0.1,0.1,0.1,0.01,0.1] 
ClimStart= 1961 
ClimEnd=  1990 
JulianDay= [1,32,60,91,121,152,182,213,244,274,305,335,366] 
# 0) Start 
print 'Processing CRU climatology and timeseries' 
 1) deriving climatology 
print '\t%s' % 'calculating climatology over 1961-1990 for:' 
ParamCnt= 0 
CRUTSSMask= pcr.boolean(1) 
Mask= [pcr.ordinal(0)]*len(CRUTSSParamList) 
for Param in CRUTSSParamList: 
 -echoing parameter to screen 
 print '\t\t%s' % Param 
 -unzipping all data to directory 
 PathOut= os.path.join(CRUTSSPath,Param) 
 FileNameIn= os.path.join(CRUArchivePath,'cru_%s.zip' % (Param)) 
 try: 
  os.mkdir(CRUTSSPath) 
  os.mkdir(PathOut) 
 except: 
  pass 
 zipToDir(FileNameIn,PathOut) 
 -initializing bins 
 SX= [pcr.scalar(0)]*NMonths 
 SSQ= [pcr.scalar(0)]*NMonths 
 N= [pcr.scalar(0)]*NMonths 
 for YearOrd in range(StartYear,EndYear+1): 
  for MonthOrd in range(1,NMonths+1): 
   ID= pcr.ordinal(YearOrd*100+MonthOrd) 
   X= pcr.readmap(os.path.join(PathOut,'c%s%04d.%03d' %\ 
     (Param,YearOrd,MonthOrd))) 
   XValid= 
pcr.ifthenelse((X+2730)>=0,pcr.boolean(1),pcr.boolean(0)) 
   XValid= pcr.cover(XValid,pcr.boolean(0)) 
   if YearOrd == StartYear and MonthOrd == 1: 
    Mask[ParamCnt]= pcr.ifthenelse(XValid,ID,Mask[ParamCnt]) 
   else: 
    Mask[ParamCnt]= 
pcr.ifthenelse(pcr.pcrand(pcr.pcrnot(XValid),\ 
     (Mask[ParamCnt] > 0)),ID,Mask[ParamCnt]) 
   if YearOrd >= ClimStart and YearOrd <= ClimEnd: 
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    adding data 
    SX[MonthOrd-1]= SX[MonthOrd-1]+X 
    SSQ[MonthOrd-1]= SSQ[MonthOrd-1]+X**2 
    N[MonthOrd-1]= N[MonthOrd-
1]+pcr.ifthenelse(XValid,pcr.scalar(1),0) 
 for MonthOrd in range(1,NMonths+1): 
  -calculating mean and standard deviation 
  AVG= pcr.ifthen(N[MonthOrd-1]>=1,SX[MonthOrd-1]/N[MonthOrd-1]) 
  SD= pcr.ifthen(N[MonthOrd-1]>=1,\ 
    1/N[MonthOrd-1]*(N[MonthOrd-1]*SSQ[MonthOrd-1]-SX[MonthOrd-
1]**2)**0.5) 
  pcr.report(AVG,os.path.join(CRUClimPath,'clm%sav.%03d' % 
(Param,MonthOrd))) 
  pcr.report(SD,os.path.join(CRUClimPath,'clm%ssd.%03d' % 
(Param,MonthOrd))) 
 -reporting mask and updating ParamCnt 
 CRUTSSMask= pcr.ifthenelse(pcr.pcrand(Mask[ParamCnt] <> \ 
   pcr.ordinal(StartYear*100+1),\ 
   Mask[ParamCnt] > 0),pcr.boolean(0),CRUTSSMask) 
 pcr.report(Mask[ParamCnt],os.path.join(CRUClimPath,'cru_ext%s.map' % Param)) 
 ParamCnt+= 1 
 2)  any change in landmask over years and betweem params 
pcr.report(CRUTSSMask,os.path.join(CRUClimPath,'cru_extent.map')) 
test,testValid= pcr.cellvalue(pcr.mapminimum(pcr.scalar(CRUTSSMask)),1) 
if test == 0: 
 some error occurred, no further processing 
 print '\t\tCRU timeseries is not contiguous over space and time' 
 All done 
print '\t\tall CRU fields processed' 
 3) create patch for climatology on the basis of holdridge classification and 
nearest point 
-conditional processing if CRUTSSMask returns only true values 
print '\t%s' % 'creating patch for climatology of wind speed and radiation' 
print '\t%s' % 'on the basis of the nearest cell with same Holdridge 
classification' 
-Holdridge classification 
PrecAnnual= pcr.scalar(0) 
TempAnnual= pcr.scalar(0) 
for MonthOrd in range(1,NMonths+1): 
 PrecAnnual= PrecAnnual+pcr.readmap(os.path.join(CRUClimPath,'clm%sav.%03d' % 
('pre',MonthOrd))) 
 TempAnnual= TempAnnual+pcr.readmap(os.path.join(CRUClimPath,'clm%sav.%03d' % 
('tmp',MonthOrd))) 
PrecAnnual= pcr.scalar(0.1)*PrecAnnual 
TempAnnual= pcr.scalar(0.1/12.0)*TempAnnual 
HolClass= pcr.lookupnominal('maps/holdridge_classification.tbl',\ 
  PrecAnnual,TempAnnual) 
pcr.report(PrecAnnual,os.path.join(CRUClimPath,'clm%stot.map' % 'pre')) 
pcr.report(TempAnnual,os.path.join(CRUClimPath,'clm%stot.map' % 'tmp')) 
pcr.report(HolClass,'maps/holdridge.map') 
HolClass= pcr.cover(HolClass,0) 
-area covered by climatology and ID map 
Param= 'rad' 
X= pcr.readmap(os.path.join(CRUClimPath,'c%s%04d.%03d' %\ 
     (Param,6190,1))) 
CRUClimMask= pcr.ifthenelse(X >= 0,pcr.boolean(1),pcr.boolean(0)) 
Param= 'wnd' 
X= pcr.readmap(os.path.join(CRUClimPath,'c%s%04d.%03d' %\ 
     (Param,6190,1))) 
CRUClimMask= pcr.cover(pcr.ifthenelse(pcr.abs(X) >= 
0,CRUClimMask,pcr.boolean(0)),0) 
CRUTSSMask= pcr.cover(pcr.ifthenelse(Mask[0]>0,CRUTSSMask,pcr.boolean(0)),0) 
CRUPatch= pcr.pcrxor(CRUClimMask,CRUTSSMask) 
CRUClimID= pcr.nominal(pcr.uniqueid(CRUClimMask)) 
pcr.report(CRUClimMask,'maps/cruclimmask.map') 
pcr.report(CRUPatch,'maps/crupatch.map') 
CRUPatchID= pcr.nominal(0) 
for Class in range(1,57): 
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 -stepping through holdridge zones 
 CRUClimIDSel= pcr.ifthenelse(HolClass == pcr.nominal(Class),\ 
   CRUClimID,0) 
 CRUClimIDSpread= pcr.spreadzone(CRUClimIDSel,pcr.scalar(0),pcr.scalar(1)) 
 CRUPatchID= pcr.ifthenelse(pcr.pcrand(CRUPatch,HolClass == 
pcr.nominal(Class)),\ 
   CRUClimIDSpread,CRUPatchID) 
CRUPatchID= pcr.ifthenelse(CRUPatch,CRUPatchID,CRUClimID) 
pcr.report(CRUPatchID,'maps/crupatchid.map') 
-patch constructed 
print '\t\t%s' % 'patch constructed' 
 4) Calculate evapotranspiration 
print '\t%s' % '\tcalculating reference evapotranspiration' 
-creating new climatology  
print '\t\t%s' % 'patching wind and radiation fields' 
for MonthOrd in range(1,NMonths+1): 
 for Param in ['rfr','wnd']: 
  X= pcr.readmap(os.path.join(CRUClimPath,'c%s%04d.%03d' %\ 
    (Param,6190,MonthOrd))) 
  Y= pcr.ifthenelse(CRUPatch,pcr.areaaverage(X,CRUPatchID),X) 
  pcr.report(Y,os.path.join(CRUClimPath,'x%s%04d.%03d' %\ 
    (Param,6190,MonthOrd))) 
-creating output directory 
Param= 'etp' 
PathOut= os.path.join(CRUTSSPath,Param) 
FileNameIn= os.path.join(CRUArchivePath,'cru_%s.zip' % (Param)) 
try: 
 os.mkdir(CRUTSSPath) 
 os.mkdir(PathOut) 
except: 
 pass 
YearCnt= 0 
for YearOrd in range(StartYear,EndYear+1): 
 YearCnt+=1 
 print '\t\t%s%04d' %('processing year ',YearOrd) 
 command= 'pcrcalc -d temp.map -f penmon_cru.txt %04d' % YearOrd 
 os.system(command) 
 for MonthOrd in range(1,13): 
  FileNameIn= os.path.join(PathOut,'%s%04d.%03d' % 
('epot',YearOrd,MonthOrd)) 
  FileNameOut= os.path.join(PathOut,'%s%04d.%03d' % 
('cetp',YearOrd,MonthOrd)) 
  shutil.move(FileNameIn,FileNameOut) 
print '\t\t%s' % 'all monthly evapotranspiration fields calculated' 
 5) deriving climatology for evaptranspiration 
print '\t%s' % 'calculating climatology over 1961-1990 for:' 
ParamCnt= 0 
Mask= [pcr.ordinal(0)]*len(CRUTSSParamList) 
for Param in ['etp']: 
 -setting path 
 PathOut= os.path.join(CRUTSSPath,Param) 
 -echoing parameter to screen 
 print '\t\t%s' % Param 
 -initializing bins 
 SX= [pcr.scalar(0)]*NMonths 
 SSQ= [pcr.scalar(0)]*NMonths 
 N= [pcr.scalar(0)]*NMonths 
 for YearOrd in range(StartYear,EndYear+1): 
  for MonthOrd in range(1,NMonths+1): 
   ID= pcr.ordinal(YearOrd*100+MonthOrd) 
   X= pcr.readmap(os.path.join(PathOut,'c%s%04d.%03d' %\ 
     (Param,YearOrd,MonthOrd))) 
   XValid= 
pcr.ifthenelse((X+2730)>=0,pcr.boolean(1),pcr.boolean(0)) 
   XValid= pcr.cover(XValid,pcr.boolean(0)) 
   if YearOrd == StartYear and MonthOrd == 1: 
    Mask[ParamCnt]= pcr.ifthenelse(XValid,ID,Mask[ParamCnt]) 
   else: 
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    Mask[ParamCnt]= 
pcr.ifthenelse(pcr.pcrand(pcr.pcrnot(XValid),\ 
     (Mask[ParamCnt] > 0)),ID,Mask[ParamCnt]) 
   if YearOrd >= ClimStart and YearOrd <= ClimEnd: 
    adding data 
    SX[MonthOrd-1]= SX[MonthOrd-1]+X 
    SSQ[MonthOrd-1]= SSQ[MonthOrd-1]+X**2 
    N[MonthOrd-1]= N[MonthOrd-
1]+pcr.ifthenelse(XValid,pcr.scalar(1),0) 
 for MonthOrd in range(1,NMonths+1): 
  -calculating mean and standard deviation 
  AVG= pcr.ifthen(N[MonthOrd-1]>=1,SX[MonthOrd-1]/N[MonthOrd-1]) 
  SD= pcr.ifthen(N[MonthOrd-1]>=1,\ 
    1/N[MonthOrd-1]*(N[MonthOrd-1]*SSQ[MonthOrd-1]-SX[MonthOrd-
1]**2)**0.5) 
  pcr.report(AVG,os.path.join(CRUClimPath,'clm%sav.%03d' % 
(Param,MonthOrd))) 
  pcr.report(SD,os.path.join(CRUClimPath,'clm%ssd.%03d' % 
(Param,MonthOrd))) 
 -reporting mask and updating ParamCnt 
 pcr.report(Mask[ParamCnt],os.path.join(CRUClimPath,'cru_ext%s.map' % Param)) 
 ParamCnt+= 1 
-total over climatology 
EpotAnnual= pcr.scalar(0) 
for MonthOrd in range(1,NMonths+1): 
 EpotAnnual= EpotAnnual+pcr.readmap(os.path.join(CRUClimPath,'clm%sav.%03d' % 
('etp',MonthOrd))) 
pcr.report(pcr.scalar(365/12)*EpotAnnual,os.path.join(CRUClimPath,'clm%stot.map' % 
'etp')) 
#6) creating growing season 
print '\t%s' % 'obtaining growing season and growth function' 
#-create directory if not exisiting already 
try: 
 os.mkdir(CRUGrowthPath) 
except: 
 pass 
#-processing temperature, precipitation and evaporation for growth season of 
natural vegetation 
#-crop factor variables 
CropVegMax= 1.20 
CropVegMin= 0.20 
CropVegStep= 0.01 
CropVeg= pcr.scalar(CropVegMax) 
CropStack=  [pcr.boolean(0.0)]*12 
#-temperature limit curtailing growing season 
tmpLimit= pcr.scalar(5.0) 
#-meteo Stacks 
tmpStack= [pcr.scalar(0.0)]*12 
preStack= [pcr.scalar(0.0)]*12 
preMax= pcr.scalar(0.0) 
#-moisture values and stacks 
moiststorMax= pcr.scalar(300.0) 
moistgrowthLim= pcr.scalar(125.0) 
moiststorHi= pcr.scalar(0.0) 
moiststorLo= pcr.scalar(0.0) 
moiststorStack= [pcr.scalar(0.0)]*12 
moistdefStack= [pcr.scalar(0.0)]*12 
#-stacks for functions specifying growth 
fTStack= [pcr.scalar(0.0)]*12 
fSStack= [pcr.scalar(0.0)]*12 
fGStack= [pcr.scalar(0.0)]*12 
#-patch for relative LAI, estimated crop factor and meteo factor 
jointClone= pcr.pcror(CloneMap,cruClone) 
#-points of nodes on growth curve and stack for months: 
# 0) no particulars, 1) start of growth, 2) start of mid-season, 
# 3) end of mid-season, 4) end of senescence 
# and timing thereof 
nodeStack= [pcr.scalar(0.0)]*12 
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stepStack= [pcr.scalar(0.0)]*12 
devStack= [pcr.scalar(0.0)]*12 
relLAIStack= [pcr.scalar(0.0)]*12 
emergenceLim= pcr.scalar(0.10) 
matureLim= pcr.scalar(0.80) 
senescenceLim= pcr.scalar(0.60) 
fGMaxOcc= pcr.scalar(-1) 
emergenceStart= pcr.scalar(-1) 
matureStart= pcr.scalar(-1) 
senescenceStart= pcr.scalar(-1) 
dormancyStart= pcr.scalar(-1) 
#-obtaining BATS temperature function and 
# determining start, end and length of growing season 
#-reading in stacks of temperature and precipitation 
tmpMin= tmpLimit 
tmpMax= pcr.scalar(-1.0e2) 
growthStart= pcr.scalar(-1) 
growthEnd= pcr.scalar(-1) 
growthLength= pcr.scalar(0) 
growthMultiple= pcr.boolean(0) 
for MonthOrd in range(1,13): 
 tmpX= 
pcr.scalar(CRUTSSConvList[0])*pcr.readmap(os.path.join(CRUClimPath,'clm%sav.%03d' % 
\ 
  ('tmp',MonthOrd))) 
 tmpStack[MonthOrd-1]= tmpX 
 tmpMax= pcr.ifthenelse(tmpX>=tmpLimit,pcr.max(tmpX,tmpMax),tmpMax) 
 preX= pcr.scalar(CRUTSSConvList[1])*pcr.readmap(os.path.join(CRUClimPath,\ 
   'clm%sav.%03d' % ('pre',MonthOrd))) 
 preStack[MonthOrd-1]= preX 
 preMax= pcr.max(preX,preMax) 
#-looping through years to process growing season temporal characteristics 
# and obtaining BATS function 
for MonthOrd in range(0,12): 
 fTStack[MonthOrd]= pcr.ifthenelse(tmpStack[MonthOrd]>tmpLimit,\ 
  pcr.scalar(1.0)-pcr.min(1,(tmpMax-tmpStack[MonthOrd])/\ 
  (tmpMax-tmpMin))**2,0) 
 growthLength= 
growthLength+pcr.ifthenelse(tmpStack[MonthOrd]>=tmpLimit,pcr.scalar(1),\ 
  pcr.scalar(0)) 
 growthMultiple= 
pcr.ifthenelse(pcr.pcrand(pcr.pcrand(tmpStack[MonthOrd]>=tmpLimit,\ 
  tmpStack[MonthOrd-1]<tmpLimit),growthStart>0),\ 
  pcr.boolean(1),growthMultiple) 
 growthStart= pcr.ifthenelse(pcr.pcrand(tmpStack[MonthOrd]>=tmpLimit,\ 
  tmpStack[MonthOrd-1]<tmpLimit),pcr.scalar(MonthOrd+1),growthStart) 
 growthEnd= pcr.ifthenelse(pcr.pcrand(tmpStack[MonthOrd]<tmpLimit,\ 
  tmpStack[MonthOrd-1]>=tmpLimit),pcr.scalar(MonthOrd+1),growthEnd) 
#-water balance 
#looped through CropVegList, updated if moistStorHi is zero 
CropCntMax= int(CropVegMax/CropVegStep+0.5) 
CropCntMin= int(CropVegMin/CropVegStep-0.5) 
for CropCnt in range(CropCntMax,CropCntMin,-1): 
 CropVegValue= CropVegMin+(CropCnt-(CropCntMin+1))*CropVegStep 
 print '\t\t%s%4.2f' % ('crop factor: ',CropVegValue) 
 CropVeg= pcr.ifthenelse(pcr.pcrand(moiststorHi>moistgrowthLim,\ 
  moiststorLo>pcr.scalar(-1.0)*moistgrowthLim),\ 
  CropVeg,pcr.scalar(CropVegValue)) 
 CropBare= min(CropVeg,pcr.scalar(0.2)) 
 #-obtaining crop factor 
 for MonthOrd in range(0,12): 
  CropStack[MonthOrd]=  CropBare+0.5*(fTStack[MonthOrd-1]+\ 
   fTStack[MonthOrd])*(CropVeg-CropBare) 
 #-resetting moiststorLo to maximum available storage 
 moiststorLo= moiststorMax 
 #-stepping through five years to get dynamic equilibrium for water balance, 
 # moisture storage in mm and cumulative moistre deficit and 
 for YearOrd in range(0,5): 



36 of 46 

  for MonthOrd in range(1,13): 
   preX= preStack[MonthOrd-1] 
   etpX= CropStack[MonthOrd-1]*pcr.scalar(\ 
    1000*(JulianDay[MonthOrd]-JulianDay[MonthOrd-1]))*\ 
    pcr.readmap(os.path.join(CRUClimPath,'clm%sav.%03d' %\ 
    ('etp',MonthOrd))) 
   moiststorStack[MonthOrd-1]= 
pcr.min(moiststorMax,moiststorStack[MonthOrd-2]+preX-etpX) 
   moistdefStack[MonthOrd-1]= 
pcr.ifthenelse(moiststorStack[MonthOrd-1]<0,\ 
    moistdefStack[MonthOrd-2]+moiststorStack[MonthOrd-1],0) 
   moiststorStack[MonthOrd-1]= pcr.max(0,moiststorStack[MonthOrd-
1]) 
   moiststorHi= pcr.max(moiststorStack[MonthOrd-1],moiststorHi) 
   moiststorLo= pcr.min(moistdefStack[MonthOrd-1],moiststorLo) 
#-boolean map of areas without any positive storage to 
# patch f(S) for these areas on the basis of 2-month average precipitation 
desert= pcr.ifthenelse(moiststorHi>0.0,pcr.boolean(0),pcr.boolean(1)) 
#for MonthOrd in range(0,12): 
#-obtaining reduction function due to water stress for areas with emphemeral water 
shortage 
# and growth function per month and peak growth 
fGMax= pcr.scalar(-9.9) 
for MonthOrd in range(0,12): 
 weightFactor= 0 
 for icnt in range(0,1): 
  weightFactor+= 1 
  Month= MonthOrd+icnt 
  if Month>11: 
   Month= Month-12 
  fSStack[MonthOrd]= fSStack[MonthOrd]+preStack[Month] 
 fSStack[MonthOrd]= 1.0/weightFactor*fSStack[MonthOrd]/preMax 
 fSStack[MonthOrd]= pcr.ifthenelse(desert,fSStack[MonthOrd],\ 
  pcr.max(0,1+moistdefStack[MonthOrd]/moiststorHi)) 
 fGStack[MonthOrd]= fTStack[MonthOrd]*fSStack[MonthOrd] 
 fGMax= pcr.max(fGMax,fGStack[MonthOrd]) 
#-patch for points that have temperature above threshold but have no growth 
# (no moisture during growingseason) and scaling values between 0 and 1 
laiPatch= pcr.ifthenelse(cruClone,pcr.pcrand(fGMax>emergenceLim,\ 
  tmpMax>tmpLimit),pcr.pcrnot(CloneMap)) 
CRUPatchSel= pcr.nominal(pcr.pcrand(cruClone,laiPatch)) 
CRUPatchID= pcr.spreadzone(CRUPatchSel,pcr.scalar(0),pcr.scalar(1)) 
fGMax= pcr.scalar(-9.9) 
fGMin= pcr.scalar(9.9) 
for MonthOrd in range(0,12): 
 fGStack[MonthOrd]= pcr.ifthen(laiPatch,fGStack[MonthOrd]) 
 fGStack[MonthOrd]= pcr.ifthen(jointClone,pcr.cover(fGStack[MonthOrd],\ 
  pcr.areaaverage(fGStack[MonthOrd],CRUPatchID))) 
 fGMin= pcr.min(fGMin,fGStack[MonthOrd]) 
 fGMax= pcr.max(fGMax,fGStack[MonthOrd]) 
for MonthOrd in range(0,12): 
 fGMaxOcc= pcr.ifthenelse(fGStack[MonthOrd]==fGMax,pcr.scalar(MonthOrd+1),\ 
  fGMaxOcc)  
 fGStack[MonthOrd]= (fGStack[MonthOrd]-fGMin)/(fGMax-fGMin) 
 fGStack[MonthOrd]= 
pcr.cover(pcr.ifthenelse(tmpMax>tmpLimit,fGStack[MonthOrd],0),\ 
  fGStack[MonthOrd]) 
 fGStack[MonthOrd]= pcr.min(matureLim,pcr.max(emergenceLim,fGStack[MonthOrd])) 
#patching crop factor 
CropVeg= pcr.ifthen(jointClone,pcr.cover(CropVeg,\ 
 pcr.areaaverage(CropVeg,CRUPatchID))) 
#-determining nodes of growth functions 
for MonthOrd in range(0,12): 
 MonthPrev= MonthOrd-1 
 MonthSucc= MonthOrd+1 
 if MonthSucc>11: 
  MonthSucc= MonthSucc-12 
 #-emergence 
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 nodeStack[MonthOrd]= 
pcr.ifthenelse(pcr.pcrand(fGStack[MonthOrd]<=emergenceLim,\ 
  fGStack[MonthSucc]>emergenceLim),pcr.scalar(1),nodeStack[MonthOrd]) 
 #-start mid-season 
 nodeStack[MonthOrd]= pcr.ifthenelse(pcr.pcrand(fGStack[MonthOrd]>=
 matureLim,\ 
  fGStack[MonthPrev]<matureLim),pcr.scalar(2),nodeStack[MonthOrd]) 
 #-end mid-season 
 nodeStack[MonthOrd]= pcr.ifthenelse(pcr.pcrand(fGStack[MonthOrd]>=matureLim,\ 
  fGStack[MonthSucc]<matureLim),pcr.scalar(3),nodeStack[MonthOrd]) 
 #-senescence 
 nodeStack[MonthOrd]= 
pcr.ifthenelse(pcr.pcrand(fGStack[MonthOrd]>=senescenceLim,\ 
  fGStack[MonthSucc]<senescenceLim),pcr.scalar(4),nodeStack[MonthOrd]) 
#-selecting nodes of interest from node types 
emergenceDuration= pcr.scalar(13) 
matureDuration= pcr.scalar(13) 
senescenceDuration= pcr.scalar(13) 
dormancyDuration= pcr.scalar(13) 
for MonthOrd in range(0,12): 
 #-map of current month 
 MonthMap= pcr.scalar(MonthOrd+1) 
 #duration from month to peak of growth 
 Duration= fGMaxOcc-
MonthMap+pcr.ifthenelse(MonthMap>fGMaxOcc,pcr.scalar(12),0) 
 # 1) emergence 
 emergenceCond= 
pcr.ifthenelse(nodeStack[MonthOrd]==1,pcr.boolean(1),pcr.boolean(0)) 
 emergenceStart= pcr.ifthenelse(pcr.pcrand(Duration<emergenceDuration,\ 
  emergenceCond),MonthMap,emergenceStart) 
 emergenceDuration= pcr.ifthenelse(emergenceCond,\ 
  pcr.min(Duration,emergenceDuration),emergenceDuration) 
for MonthOrd in range(0,12): 
 #-map of current month 
 MonthMap= pcr.scalar(MonthOrd+1) 
 #duration from month to peak of growth 
 Duration= fGMaxOcc-
MonthMap+pcr.ifthenelse(MonthMap>fGMaxOcc,pcr.scalar(12),0) 
 # 2) start of maturity 
 matureCond= 
pcr.ifthenelse(pcr.pcrand(nodeStack[MonthOrd]==2,emergenceDuration>Duration),\ 
  pcr.boolean(1),pcr.boolean(0)) 
 matureStart= pcr.ifthenelse(pcr.pcrand(Duration<matureDuration,\ 
  matureCond),MonthMap,matureStart) 
 matureDuration= pcr.ifthenelse(matureCond,\ 
  pcr.min(Duration,matureDuration),matureDuration) 
for MonthOrd in range(0,12): 
 #-map of current month 
 MonthMap= pcr.scalar(MonthOrd+1) 
 #duration from peak of growth to month 
 Duration= MonthMap-
fGMaxOcc+pcr.ifthenelse(MonthMap<fGMaxOcc,pcr.scalar(12),0) 
 # 3) start of senescence 
 senescenceCond= pcr.ifthenelse(pcr.pcror(nodeStack[MonthOrd]==3,\ 
  pcr.pcrand(fGStack[MonthOrd]==matureLim,nodeStack[MonthOrd]==4)),\ 
  pcr.boolean(1),pcr.boolean(0)) 
 senescenceStart= pcr.ifthenelse(pcr.pcrand(Duration<senescenceDuration,\ 
  senescenceCond),MonthMap,senescenceStart) 
 senescenceDuration= pcr.ifthenelse(senescenceCond,\ 
  pcr.min(Duration,senescenceDuration),senescenceDuration) 
 # 4) start of dormancy, reset if regrowth occurs and value is closer 
 #to senescence than to emergence 
 dormancyReset= pcr.ifthenelse(pcr.pcrand(dormancyDuration<13,\ 
  pcr.pcror(nodeStack[MonthOrd]==2,nodeStack[MonthOrd]==3)), 
  pcr.boolean(1),pcr.boolean(0)) 
 dormancyReset= pcr.ifthenelse(Duration<MonthMap-emergenceStart+\ 
  pcr.ifthenelse(MonthMap<emergenceStart,pcr.scalar(12),0),\ 
  dormancyReset,pcr.boolean(0)) 
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 dormancyDuration= 
pcr.ifthenelse(dormancyReset,pcr.scalar(13),dormancyDuration) 
 dormancyCond= 
pcr.ifthenelse(nodeStack[MonthOrd]==4,pcr.boolean(1),pcr.boolean(0)) 
 dormancyStart= pcr.ifthenelse(pcr.pcrand(Duration<dormancyDuration,\ 
  dormancyCond),MonthMap,dormancyStart) 
 dormancyDuration= pcr.ifthenelse(dormancyCond,\ 
  pcr.min(Duration,dormancyDuration),dormancyDuration) 
#-patching start of growth season for desert regions 
matureStart= pcr.ifthenelse(matureStart<0,senescenceStart,matureStart)  
#-obtaining step function and deviations thereof 
# 1) emergence and full growth 
#-timers and slope 
MonthMaturity= matureStart-emergenceStart+\ 
 pcr.ifthenelse(matureStart<emergenceStart,pcr.scalar(12),0) 
MonthSenescence= senescenceStart-emergenceStart+\ 
 pcr.ifthenelse(senescenceStart<emergenceStart,pcr.scalar(12),0) 
growthSlope= (matureLim-emergenceLim)/MonthMaturity 
#-interpolation between emergence and full growth conditions 
for MonthOrd in range(0,12): 
 MonthMap= pcr.scalar(MonthOrd+1) 
 MonthMap= MonthMap-
emergenceStart+pcr.ifthenelse(MonthMap<emergenceStart,pcr.scalar(12),0) 
 stepStack[MonthOrd]= pcr.ifthenelse(MonthMap<MonthMaturity,\ 
  MonthMap*growthSlope,0)+emergenceLim 
 stepStack[MonthOrd]= pcr.ifthenelse(pcr.pcrand(MonthMap>=MonthMaturity,\ 
  MonthMap<=MonthSenescence),matureLim,stepStack[MonthOrd]) 
# 2) senescence and dormancy after full growth 
#-timers and slope 
MonthSenescence= dormancyStart-senescenceStart+\ 
 pcr.ifthenelse(dormancyStart<senescenceStart,pcr.scalar(12),0) 
MonthEmergence= emergenceStart-senescenceStart+\ 
 pcr.ifthenelse(emergenceStart<senescenceStart,pcr.scalar(12),0) 
senescenceSlope= pcr.scalar(0) 
dormancySlope= pcr.scalar(0) 
for MonthOrd in range(0,12): 
 MonthPrev= MonthOrd-1 
 MonthSucc= MonthOrd+1 
 if MonthSucc>11: 
  MonthSucc= MonthSucc-12 
 dormancyCond= pcr.ifthenelse(pcr.scalar(MonthOrd+1)==dormancyStart,\ 
  pcr.boolean(1),pcr.boolean(0)) 
 senescenceSlope= pcr.ifthenelse(dormancyCond,\ 
  pcr.ifthenelse(MonthSenescence>0,\ 
   (fGStack[MonthOrd]-matureLim)/MonthSenescence,pcr.scalar(-
1)),senescenceSlope) 
 dormancySlope= pcr.ifthenelse(dormancyCond,\ 
  pcr.min(fGStack[MonthOrd]-fGStack[MonthPrev],\ 
  fGStack[MonthSucc]-fGStack[MonthOrd]),dormancySlope) 
 senescenceLim= pcr.ifthenelse(dormancyCond,fGStack[MonthOrd],senescenceLim) 
#-interpolation between end of full growth and start of senescence 
for MonthOrd in range(0,12): 
 MonthMap= pcr.scalar(MonthOrd+1) 
 MonthMap= MonthMap-
senescenceStart+pcr.ifthenelse(MonthMap<senescenceStart,pcr.scalar(12),0) 
 stepStack[MonthOrd]= pcr.ifthenelse(MonthMap<MonthSenescence,\ 
  matureLim+MonthMap*senescenceSlope,stepStack[MonthOrd]) 
 stepStack[MonthOrd]= pcr.ifthenelse(pcr.pcrand(MonthMap>=MonthSenescence,\ 
  MonthMap<MonthEmergence),pcr.max(emergenceLim,senescenceLim+\ 
  (MonthMap-MonthSenescence)*dormancySlope),stepStack[MonthOrd]) 
#-scaling growth functions between 0 and 1 and obtaining deviations 
# to scale relative LAI 
for MonthOrd in range(0,12): 
 fGStack[MonthOrd]= (fGStack[MonthOrd]-emergenceLim)/(matureLim-emergenceLim) 
 stepStack[MonthOrd]= (stepStack[MonthOrd]-emergenceLim)/(matureLim-
emergenceLim) 
 devStack[MonthOrd]= pcr.scalar(1.0)-0.5*((CropVeg-CropVegMin)/(CropVegMax-
CropVegMin)+\ 
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  fGStack[MonthOrd]-stepStack[MonthOrd]) 
 devStack[MonthOrd]= pcr.ifthenelse(stepStack[MonthOrd]>0,\ 
   stepStack[MonthOrd]**devStack[MonthOrd],stepStack[MonthOrd]) 
#-check for any erroneous spikes 
for MonthOrd in range(0,12): 
 MonthPrev= MonthOrd-1 
 MonthSucc= MonthOrd+1 
 if MonthSucc>11: 
  MonthSucc= MonthSucc-12 
 slopePrev= devStack[MonthPrev]-devStack[MonthOrd] 
 slopeSucc= devStack[MonthOrd]-devStack[MonthSucc] 
 slopePrev= pcr.ifthenelse(slopePrev==0,pcr.scalar(0),\ 
  slopePrev/pcr.abs(slopePrev)) 
 slopeSucc= pcr.ifthenelse(slopeSucc==0,pcr.scalar(0),\ 
  slopeSucc/pcr.abs(slopeSucc)) 
 changeCond= pcr.ifthenelse(pcr.pcror(slopePrev==0,slopeSucc==0),\ 
  pcr.boolean(0),pcr.ifthenelse(slopePrev==slopeSucc,pcr.boolean(0),\ 
  pcr.boolean(1))) 
 changeCond= pcr.ifthenelse(pcr.pcrand(devStack[MonthOrd]>emergenceLim,\ 
  devStack[MonthOrd]<matureLim),changeCond,pcr.boolean(0)) 
 relLAIStack[MonthOrd]= pcr.ifthenelse(changeCond,\ 
  0.5*(devStack[MonthPrev]+devStack[MonthSucc]),\ 
  devStack[MonthOrd]) 
#-calculating growth length characteristics and check on generated output 
fullGrowthSeason= pcr.scalar(0) 
optGrowthSeason= pcr.scalar(0) 
laiRelCover= pcr.boolean(1) 
for MonthOrd in range(0,12): 
 optGrowthSeason= optGrowthSeason+\ 
   pcr.ifthenelse(relLAIStack[MonthOrd]==1,pcr.scalar(1),pcr.scalar(0)) 
 fullGrowthSeason= fullGrowthSeason+\ 
   pcr.ifthenelse(relLAIStack[MonthOrd]>0,pcr.scalar(1),pcr.scalar(0)) 
 laiRelCover= pcr.ifthenelse(cruClone,\ 
   pcr.ifthenelse(pcr.cover(relLAIStack[MonthOrd],-1)>= 
0,laiRelCover,pcr.boolean(0)),\ 
   pcr.boolean(1)) 
growthSeasonAnomaly= 
pcr.ifthen(cruClone,pcr.ifthenelse(optGrowthSeason>fullGrowthSeason,\ 
  pcr.boolean(1),0)) 
laiMinAnomaly= pcr.boolean(0) 
laiMaxAnomaly= pcr.boolean(0) 
for MonthOrd in range(0,12): 
 MonthMap= pcr.scalar(MonthOrd+1) 
 laiMinAnomaly= pcr.ifthenelse(MonthMap== 
emergenceStart,pcr.ifthenelse(relLAIStack[MonthOrd]<>\ 
    0.0,pcr.boolean(1),pcr.boolean(0)),laiMinAnomaly) 
 laiMaxAnomaly= pcr.ifthenelse(MonthMap== 
fGMaxOcc,pcr.ifthenelse(relLAIStack[MonthOrd]<> 1.0,\ 
   pcr.boolean(1),pcr.boolean(0)),laiMaxAnomaly) 
laiMinAnomaly= pcr.cover(laiMinAnomaly,0) 
laiMaxAnomaly= pcr.cover(laiMaxAnomaly,0) 
#-calculation of meteorological factor for crop factor 
# for month at which growth function is at its maximum 
MetFactor= pcr.scalar(0.0) 
for MonthOrd in range(1,13): 
 wndX= pcr.scalar(0.75)*pcr.scalar(1.0)*\ 
   pcr.readmap(os.path.join(CRUClimPath,'x%s%04d.%03d' % 
('wnd',6190,MonthOrd))) 
 tmpX= pcr.scalar(0.1)*\ 
   pcr.readmap(os.path.join(CRUClimPath,'clm%sav.%03d' % ('tmp',MonthOrd))) 
 deltaTmp= pcr.scalar(0.1)*\ 
   pcr.readmap(os.path.join(CRUClimPath,'clm%sav.%03d' % ('dtr',MonthOrd))) 
 maxTmp= tmpX+0.5*deltaTmp 
 minTmp= tmpX-0.5*deltaTmp-\ 
   pcr.ifthenelse(moistdefStack >=0,pcr.scalar(0.0),pcr.scalar(2.0)) 
 RHMin= 
pcr.scalar(100.0)*pcr.scalar(611.0)*pcr.exp(17.27*minTmp/(minTmp+237.3))/\ 
   (pcr.scalar(611.0)*pcr.exp(17.27*maxTmp/(maxTmp+237.3))) 
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 RHMin= pcr.min(80.0,pcr.max(RHMin,20)) 
 wndX= pcr.max(1.0,pcr.min(wndX,6.0)); 
 MetFactor= pcr.ifthenelse(fGMaxOcc==pcr.scalar(MonthOrd),\ 
   pcr.scalar(0.04)*(wndX-pcr.scalar(2.0))-\ 
   pcr.scalar(0.004)*(RHMin-45),MetFactor) 
#-patching meteo factor 
MetFactor= 
pcr.ifthenelse(jointClone,pcr.cover(MetFactor,pcr.areaaverage(MetFactor,CRUPatchID)
),0) 
#-reporting maps of interest and exporting ASCII maps 
pcr.report(growthLength,os.path.join(CRUGrowthPath,'growthlength.map')) 
pcr.report(growthStart,os.path.join(CRUGrowthPath,'growthstart.map')) 
pcr.report(growthEnd,os.path.join(CRUGrowthPath,'growthend.map')) 
pcr.report(growthMultiple,os.path.join(CRUGrowthPath,'growthmultiple.map')) 
pcr.report(moiststorHi,os.path.join(CRUGrowthPath,'moistmax.map')) 
pcr.report(moiststorLo,os.path.join(CRUGrowthPath,'moistmin.map')) 
pcr.report(tmpMin,os.path.join(CRUClimPath,'clmtmpmin.map')) 
pcr.report(tmpMax,os.path.join(CRUClimPath,'clmtmpmax.map')) 
pcr.report(growthSeasonAnomaly,os.path.join(CRUGrowthPath,'growthanomaly.map')) 
pcr.report(laiMinAnomaly,os.path.join(CRUGrowthPath,'laimin_ano.map')) 
pcr.report(laiMaxAnomaly,os.path.join(CRUGrowthPath,'laimax_ano.map')) 
pcr.report(laiRelCover,os.path.join(CRUGrowthPath,'lai_mv.map')) 
pcr.report(laiPatch,os.path.join(CRUGrowthPath,'laipatch.map')) 
pcr.report(CropVeg,os.path.join(CRUGrowthPath,'cropveg.map')) 
pcr.report(fGMaxOcc,os.path.join(CRUGrowthPath,'fg_max.map')) 
pcr.report(emergenceStart,os.path.join(CRUGrowthPath,'emergence.map')) 
pcr.report(matureStart,os.path.join(CRUGrowthPath,'maturity.map')) 
pcr.report(senescenceStart,os.path.join(CRUGrowthPath,'senescence.map')) 
pcr.report(dormancyStart,os.path.join(CRUGrowthPath,'dormancy.map')) 
pcr.report(MetFactor,os.path.join(CRUGrowthPath,'metfactor.map')) 
pcr.report(fullGrowthSeason,os.path.join(CRUGrowthPath,'fullseason.map')) 
pcr.report(optGrowthSeason,os.path.join(CRUGrowthPath,'optseason.map')) 
for MonthOrd in range(1,13): 
 mapName= generateNameT(os.path.join(CRUGrowthPath,'tfunc'),MonthOrd) 
 pcr.report(fTStack[MonthOrd-1],mapName) 
 mapName= generateNameT(os.path.join(CRUGrowthPath,'sfunc'),MonthOrd) 
 pcr.report(fSStack[MonthOrd-1],mapName) 
 mapName= generateNameT(os.path.join(CRUGrowthPath,'gfunc'),MonthOrd) 
 pcr.report(fGStack[MonthOrd-1],mapName) 
 mapName= generateNameT(os.path.join(CRUGrowthPath,'moist'),MonthOrd) 
 pcr.report(moiststorStack[MonthOrd-1],mapName) 
 mapName= generateNameT(os.path.join(CRUGrowthPath,'moistdef'),MonthOrd) 
 pcr.report(moistdefStack[MonthOrd-1],mapName) 
 mapName= generateNameT(os.path.join(CRUGrowthPath,'node'),MonthOrd) 
 pcr.report(nodeStack[MonthOrd-1],mapName) 
 mapName= generateNameT(os.path.join(CRUGrowthPath,'step'),MonthOrd) 
 pcr.report(stepStack[MonthOrd-1],mapName) 
 mapName= generateNameT(os.path.join(CRUGrowthPath,'dev'),MonthOrd) 
 pcr.report(devStack[MonthOrd-1],mapName) 
 mapName= generateNameT(os.path.join(CRUGrowthPath,'lairel'),MonthOrd) 
 pcr.report(relLAIStack[MonthOrd-1],mapName) 
#-growth season calculated 
print '\t\t%s' % 'distribution of growth season calculated' 
#7) generating mean and sd of annual values for primary variables: P, T and E0 
print '\t%s' % 'obtaining annual values and statistics' 
#-create directory if not exisiting already 
try: 
 os.mkdir(CRUPeriod) 
except: 
 pass 
#update parameter list 
CRUTSSParamList[2]= 'etp' 
CRUTSSConvList[2]= 1000 
icnt= 0 
for Param in CRUTSSParamList[0:3]: 
 PathOut= os.path.join(CRUTSSPath,Param) 
 convMap= pcr.scalar(CRUTSSConvList[icnt]) 
 icnt+=1 
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 YearCnt= 0 
 for YearOrd in range(1901,2003): 
  YearCnt+=1 
  XAnnual= pcr.scalar(0) 
  TotDays=  pcr.scalar(0) 
  for MonthOrd in range(1,13): 
   NrDays= pcr.scalar(JulianDay[MonthOrd]-JulianDay[MonthOrd-1]) 
   if (calendar.isleap(YearOrd))and(MonthOrd == 2): 
    NrDays= NrDays+1 
   TotDays= TotDays+NrDays 
   X= convMap*pcr.readmap(os.path.join(PathOut,'c%s%04d.%03d' %\ 
    (Param,YearOrd,MonthOrd))) 
   if (Param =='tmp')or(Param=='etp'): 
    X= NrDays*X 
   XAnnual= XAnnual+X 
  if Param =='tmp': 
   XAnnual= XAnnual/TotDays 
  pcr.report(XAnnual,generateNameT(os.path.join(PathOut,'c%syear' %\ 
    Param),YearCnt)) 
 #-calculating statistics 
 command= 'pcrcalc -f cru_stat.txt %s c%syear' % (Param,Param) 
 os.system(command) 
 for Period in ['','1','2','3']: 
  for Stat in ['avg','sd','t']: 
   FileNameIn= os.path.join(CRUPeriodPath,'%s%s.map' % 
(Stat,Period)) 
   FileNameOut= os.path.join(CRUPeriodPath,'%s%s%s.map' 
%(Param,Stat,Period)) 
   try: 
    shutil.move(FileNameIn,FileNameOut) 
   except: 
    pass 
 FileNameIn= os.path.join(CRUPeriodPath,'%s.tss' % ('avg')) 
 FileNameOut= os.path.join(CRUPeriodPath,'%s.tss' %(Param)) 
 shutil.move(FileNameIn,FileNameOut) 
#-all annual statistics calculated 
print '\t\t%s' % 'annual statistics calculated'  
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Appendix 3: PCRaster script penmon_cru.txt 
#estimating potential ETP with the Penman Equation 
#for the CRU05 data set of average daily values per month 
#on the basis of the CRU TS2.1 timeseries fields 
#complemented by the CRU CL 1.0 at 0.5ï¿½ resolution 
#includes updated calculation of short and longwave radiation on the basis of the 
FAO (Allen et al.,1998) 
 
binding 
 ### INPUT ### 
 # global data 
 Mask = maps\cru_clone.map;   # clone map 
 SamplePoints= maps\globalsample.map;  # sample locations 
 DEM= maps\globaldem.map;   # dem 
 
 # table with fraction of relative sunshine hours given cloud cover 
 SUNFRACTBL= maps\sunhoursfrac.tbl; 
  
 # meteo from CRU05 dataset 
 # - time series 
 CLDStack= newlygridded\cld\ccld$1;  # Cloud cover in fraction and 
conversion factor 
 CLDConv= scalar(0.001); 
 TMPStack= newlygridded\tmp\ctmp$1;  # Air temperature in ï¿½C and 
conversion factor  
 TMPConv= scalar(0.1); 
 VAPStack= newlygridded\vap\cvap$1;  # Vapour pressure in Pa and 
conversion factor 
 VAPConv= scalar(10); 
 # - climatology over the period 1961-1990 
 WNDStack=  climatology\xwnd6190;  # Windspeed in m/s and conversion factor, 
patched to CRU TSS extent 
 WNDConv= scalar(1); 
 # - monthly climatology of extraterrestrial radiation 
 MAXRADStack= climatology\maxrad;  # maximum extraterrestrial radiation in 
W/m2 and conversion factor 
 MAXRADConv= scalar(1);  
 
 ### OUPUT ### 
 RAD= newlygridded\etp\rad;   #radiation terms: global radiation, 
shortwave, longwave and net radiation 
 RSW= newlygridded\etp\rsw; 
 RLW= newlygridded\etp\rlw; 
 Er= newlygridded\etp\rnet; 
 EPOT= newlygridded\etp\epot$1;  # reference evapotranspiration ET0 
 EPOTTSS= newlygridded\etp\epot.tss;  # reported timeseries with potential 
evaporation (mm/day) 
 EPOTANN= newlygridded\etp\epotannual.map; # total annual reference 
evapotranspiration 
 
 ### PENMAN CONSTANTS ### 
 Sigma= 5.67E-8;    # Stefan-Boltzmann constant for emission of 
longwave radiaton 
 Albedo= 0.23;     # albedo for reference crop (grass) 
 Rs= 70.0;      # surface resistance for reference 
crop (grass) 
 Cp = 1004;      # specific heat of air at constant P 
(J/(kg*K)) 
 Epsilon = 0.622;    # ratio moleculair weight of water vapour 
and dry air 
 K = 0.41;      # Karman constant 
 Roa = 1.2047;     # air density (kg/m^3) 
 Windheight = 10.0;    # height open area windspeed (m above 
ground) 
 TempHeight= 2.0;    # height open area temperature measurements 
(m above ground) 
 Vegheight =  0.12;    # height of the vegetation (m above ground) 
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 ### FAO CONSTANTS ### 
 RADCON= scalar(0.25);   #slope and constant to calculate incoming 
shortwave radiation 
 RADSLOPE= scalar(0.50);  #on basis of sunshine fraction 
 RADDIF= scalar(0.35);   #basic reduction of relative incoming 
radiation in correction of net longwave radiation 
 EA0= scalar(0.34);    #constant of correction of net longwave 
radiation for vapour pressure 
 EAFACTOR= scalar(4.43e-3);  #corresponding factor 
 
 
areamap 
 Mask; 
 
timer 
 1 12 1; 
 rep1= endtime; 
 
initial 
 ### Evapotranspiration ### 
 
 # Constant for longwave radiation correction for cloudiness 
 RADCOR= (1+RADDIF)/(RADCON+RADSLOPE); 
 
 # Constant in the windspeed part of aerodynamic resistance 
 # zero plane displacement, roughness height for momentum and heat and vapour 
transfer 
 Zd= 2/3*Vegheight; 
 Z0m= 0.123*Vegheight; 
 Z0h= 0.1*Z0m; 
 RaTerm= ln((Windheight-Zd)/(Z0m))*ln((TempHeight-Zd)/(Z0h))/sqr(K); 
 
 # pressure, not measured: set to 1013 hPa at sea level 
 Press = 101300*((293-0.0065*cover(DEM,0))/293)**5.26; 
 # annual evapotranspiration initialized 
 EPOTANN= scalar(0); 
 
dynamic 
 
 ### PENMAN EVAPOTRANSPIRATION ### 
 # reading in timeseries: TSS 
 TMP= TMPConv*timeinput(TMPStack);   # daily temperature (ï¿½C) 
 CLD= CLDConv*timeinput(CLDStack);           # cloud cover (-) 
 Ea= VAPConv*timeinput(VAPStack);   # actual vapour pressure (Pa) 
 # reading in timeseries: climatology 
 WND = WNDConv*timeinput(WNDStack);           # windspeed (m/s) 
 WND= max(0.1,WND); 
 MAXRAD= MAXRADConv*timeinput(MAXRADStack);  #maximum extraterrestrial 
radiation (W/m2) 
 
 ## Radiation term ## 
 # - sunshine fraction and corresponding fraction shortwave radiation 
 CLD1= roundoff(10*CLD+0.5); 
 CLD0= CLD1-1;  
 SUN0= lookupscalar(SUNFRACTBL,CLD0); 
 DELTASUN= (lookupscalar(SUNFRACTBL,CLD1)-SUN0)/(CLD1-CLD0); 
 SUNFRAC= SUN0+(10*CLD-CLD0)*DELTASUN; 
 RADFRAC= RADCON+RADSLOPE*SUNFRAC; 
 # - short, longwave and net radiation 
 RAD= RADFRAC*MAXRAD; 
 RSW= (1-Albedo)*RAD; 
 RLW= Sigma*(TMP+273)**4*max(0,EA0-
EAFACTOR*sqrt(Ea))*(min(1+RADDIF,RADCOR*RADFRAC)-RADDIF); 
 Er= max(0,RSW-RLW); # radiation (W/m2) 
 
 ## Mass term ## 
 #Temperature relationships 
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 Lv = 2.501E6-2370*TMP;    # latent heat of vaporazation of 
water (J/kg) 
 T237 = TMP+237.3;    # term for Goff-relationship 
 Es = 611.0*exp(17.27*TMP/T237);  # saturated and actual vap pressure (Pa) 
 RH= Ea/Es;   # not used 
 
 ## wind term ## 
 # canopy resistance (s/m) 
 Ra = RaTerm/WND; 
  
 ## weighing of radiation and mass transfer term ## 
 Delta = (4098.0*Es)/(T237**2);   # slope of sat vap pressure curve 
(Pa/oC) 
 Gamma = (Cp*Press)/(Epsilon*Lv);  # psychrometric constant (Pa/oC) 
 DGLv = (Delta+Gamma*(1+Rs/Ra))*Lv;   # Pa/ï¿½C * J/kg 
 
 # Aerodynamic evaporation rate (mm/s) 
 Ea = Roa*Cp*(Es-Ea)/Ra; 
 
 ## Potential evapotranspiration ## 
 Prad  = Delta*Er/DGLv; 
 Pwind = Ea/DGLv; 
 
 #ETP in mm/s => m/day 
 report EPOT = max(0,0.001*(Prad+Pwind)*24*3600); 
 report EPOTTSS= timeoutput(SamplePoints,EPOT); 
 report (rep1) EPOTANN= EPOTANN+EPOT*365/12; 
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Appendix 4: Subdivision of the Olson classification into the surface vegetation types used in PCR-GLOBWB (short, tall) and additional crop categories 
(natural vegetation, rain fed and irrigated crops). Only the ecosystem types occurring in the GLCC are shown. The values between brackets refer to the 
LAI during the growing season, LAIg [m

2·m-2], its range, LAIg-LAI d, and the estimated vegetation height, h [m], respectively. 
 Crop category 
Surface type Natural vegetation Rain fed crops Irrigated crops 
Short vegetation 2: Low Sparse Grassland (1.8, 1.6, 0.3) 

7: Tall Grasses and Shrubs (2.2, 1.4, 1.0) 
8: Bare Desert (0.0, 0.0, 0.1) 
9: Upland Tundra (2.3, 1.9, 0.3) 
11: Semi Desert (0.5, 0.5, 0.1) 
12: Glacier Ice (0.0, 0.0, 0.1) 
13: Wooded Wet Swamp (3.5, 0.5, 0.3) 
40: Cool Grasses and Shrubs (1.9, 1.9, 0.6) 
41: Hot and Mild Grasses and Shrubs (1.7, 1.2, 1.0) 
42: Cold Grassland (1.5, 0.6, 0.3) 
44: Mire, Bog, Fen (2.5, 2.4, 0.3) 
45: Marsh Wetland (2.5, 2.4, 0.3) 
50: Sand Desert (0.0, 0.0, 0.1) 
51: Semi Desert Shrubs (0.8, 0.3, 0.1) 
52: Semi Desert Sage (1.2, 1.2, 0.1) 
53: Barren Tundra (1.9, 1.9, 0.3) 
64: Heath Scrub (4.6, 4.5, 1.0) 
69: Polar and Alpine Desert (0.0, 0.0, 0.1) 

1: Urban (0.0, 0.0, 10.0) 
30: Cool Crops and Towns (2.5, 0.7, 1.0) 
31: Crops and Town (4.5, 3.4, 1.0) 
35: Corn and Beans Cropland (2.5, 2.1, 1.0) 
93: Grass Crops (2.0, 2.0, 0.7) 
94: Crops, Grass, Shrubs (2.7, 1.9, 1.0) 

10: Irrigated Grassland (4.5, 4.5, 0.3) 
36: Rice Paddy and Field (4.6, 4.6, 0.6) 
37: Hot Irrigated Cropland (4.4, 3.1, 0.5) 
38: Cool Irrigated Cropland (3.0, 3.0, 0.5) 
76: Crop and Water Mixtures (4.4, 4.2, 0.6) 

Tall vegetation 3: Coniferous Forest (9.2, 0.2, 10.0) 
4: Deciduous Conifer Forest (3.6, 3.5, 10.0) 
5: Deciduous Broadleaf Forest (5.2, 5.1, 10.0) 
6: Evergreen Broadleaf Forests (9.9, 0.4, 6.8) 
16: Shrub Evergreen (6.0, 3.8, 5.5) 
17: Shrub Deciduous (4.6, 4.2, 2.6) 
19: Evergreen Forest and Fields (6.0, 3.0, 2.5) 
20: Cool Rain Forest (9.3, 0.0, 10.0) 
21: Conifer Boreal Forest (5.5, 0.0, 10.0) 
22: Cool Conifer Forest (9.2, 4.8, 10.0) 
23: Cool Mixed Forest (4.2, 4.1, 10.0) 
24: Mixed Forest (7.0, 6.0, 6.8) 
25: Cool Broadleaf Forest (5.2, 4.7, 10.0) 
26: Deciduous Broadleaf Forest (5.2, 4.4, 10.0) 
27: Conifer Forest (9.7, 5.3, 10.0) 
28: Montane Tropical Forests (4.8, 0.8, 5.5) 
29: Seasonal Tropical Forest (9.1, 6.4, 10.0) 
32: Dry Tropical Woods (6.1, 3.6, 5.5) 
33: Tropical Rainforest (9.3, 0.0, 10.0) 
43: Savanna (Woods) (3.0, 2.1, 2.5) 
46: Mediterranean Scrub (4.3, 1.8, 4.6) 
47: Dry Woody Scrub (4.6, 3.8, 2.6) 
48: Dry Evergreen Woods (1.8, 0.1, 0.4) 

34: Tropical Degraded Forest (6.0, 1.6, 5.5) 
92: Broadleaf Crops (5.0, 2.7, 1.8) 
95: Evergreen Tree Crop (6.0, 3.0, 2.5) 
96: Deciduous Tree Crop (5.1, 3.6, 5.9) 
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54: Cool Southern Hemisphere Mixed Forests (4.8, 4.7, 6.5) 
55: Cool Fields and Woods (3.0, 2.1, 1.0) 
56: Forest and Field (6.1, 3.9, 1.7) 
57: Cool Forest and Field (4.0, 3.0, 1.7) 
58: Fields and Woody Savanna (5.1, 3.0, 1.0) 
59: Succulent and Thorn Scrub (4.7, 3.8, 0.3) 
60: Small Leaf Mixed Woods (3.7, 3.6, 10.0) 
61: Deciduous and Mixed Boreal Forest (4.7, 4.6, 6.5) 
62: Narrow Conifers (3.4, 3.3, 3.1) 
63: Wooded Tundra (3.1, 2.6, 0.5) 
72: Mangrove (9.0, 0.0, 10.0) 
78: Southern Hemisphere Mixed Forest (4.7, 4.6, 6.5) 
79: Wet Sclerophylic Forest (4.8, 2.0, 6.5) 
89: Moist Eucalyptus (4.8, 2.0, 6.5) 
90: Rain Green Tropical Forest (9.3, 0.0, 10.0) 
91: Woody Savanna (1.9, 0.8, 2.5) 

 
 


